
Last edited: 1/28/24 2:29:25 AM

© 2023-2024 by Bernardo Kastrup

Provided as-is, expressly without warranties
or representations of any kind. The author
disclaims all responsibility for damages
incurred as a direct or indirect result of the
use of this manual or the system it describes.

Hardware Manual

Table of contents

• Introduction 3
• Technical overview 5
• Programming instructions 21
• User’s manual 30
• Notes for programmers 41
• Expansion slot 48
• CPLD-based design 56
• Schematics 58

Introduction

• CERBERUS 2100™ is an innovative, fully-
functional computer, not a toy

• It is an open-source educational
platform for students of electronics and
computer engineering

• It gives the user direct, convenient and
unrestricted access to the hardware

• It allows for easy hardware changes and
experimentation through in-system
reprogramming of three CPLDs

• Its BIOS is an Arduino AVR sketch
written in C, thus very easy to edit

• Its architecture is highly modular,
allowing for compartmentalized, safe
experimentation

• CERBERUS 2100™ aims to demystify
computers by showing in detail how
one is built, down to single gates and
flip-flops

• Its architecture illustrates how a multi-
processor system—with expansion
possibility for even more processors—
can be built

• Its design was done explicitly at the
gate-level, with no high-level hardware
synthesis tools

• CERBERUS 2100’s architecture is clean
and very easy to understand

• Two BASIC interpreters: one for the Z80
and the other for the W65C02S CPU

Technical specifications

• Complete 8-bit multi-processor
microcomputer

• Built-in expansion slot with simple,
generic I/O protocol

• 3 processors: Z80 and W65C02S CPUs,
plus AVR I/O controller

• The CPUs run at 4 or 8 MHz (user-
selectable), the AVR controller at 16
MHz

• Chipset with 3 custom ICs (CPLDs): FAT-
SCUNK™, FAT-CAVIA™ and FAT-SPACER™

• Buzzer sound

• Up to 8 simultaneous screen colors

• Standard PS/2-compatible USB
keyboard

• Standard µSD card storage, with file
system built into the BIOS

• 64 KB of user-addressable RAM

• No ROM: the BIOS is stored in the AVR
controller’s internal Flash and uses up
no address space

• Standard VGA video, character-based,
320x240 pixels (40x30 individually
addressable characters)

• On-the-fly user-redefinable character
bitmaps for tile graphics

Technical
overview

System overview

• CERBERUS 2100™ can be divided into
three sub-systems:
• The video circuit,

driven by a 25.175 MHz oscillator
• The computer proper,

driven by a 16 MHz oscillator
• The expansion circuit

• The three sub-systems are entirely
asynchronous, modular, and
communicate with each other via
memory-mapped I/O

• The expansion circuit communicates
with the computer proper via the two
single-ported system memories,
totaling 60 KB of addressable space

• The computer proper communicates
with the video circuit via two dual-
ported memories:
• A 2KB video memory, storing a

character identifier for each screen
position

• A 2KB character memory, which
holds the character definitions or
bitmaps

• Two custom ICs in the video circuit:
• FAT-SCUNK (‘Scan CoUNter and

clocK’), which controls all VGA timing
and colors

• FAT-CAVIA (‘ChAracter Video
Adapter’), which continuously scans
the video and character memories to
generate the screen

System overview (cont.)

• The computer proper has four main ICs:
• FAT-CAT (‘Custom ATmega328pb’), the

I/O processor and system master
• FAT-SPACER (‘Serial to PArallel

ControllER’), which manages all control
signals, clocks, and translates FAT-CAT’s
serial data into parallel words & vice-
versa

• Z80, one of the two CPUs, responsible
for running user code and a BASIC
interpreter

• W65C02S, the other CPU, also with its
own BASIC interpreter

• As the system master, FAT-CAT runs the BIOS
code (Basic Input/Output System) and
delegates applications to the CPUs

• Two 32KB SRAMs (60KB user-addressable)
serve as system memory

• No ROM: BIOS code is stored in FAT-CAT’s
internal Flash memory (32 KB) and doesn’t
use system address space

• The expansion circuit consists of:
• Three tri-state bus transceivers to

boost and isolate data & address buses
• One buffer to boost and isolate control

lines
• A discrete logic gate for control signal

processing

• Signals to/from the expansion slot are
processed by FAT-CAT and FAT-SPACER

System architecture

7/26/23 4:20:11 PM The Byte Attic's CERBERUS 2100™ Manual 8

DA
TA

AD
DR

CTRL

FAT-CAT
(ATmega328PB)

28
KB

 H
ig

h
SR

AM

32
KB

 L
ow

SR
AM

FAT-SPACER
(ATF1508AS-7AX100) 2K

B
D

P
Vi

de
o

SR
AM

2K
B

D
P

CH
AR

 S
RA

M

Z80

W65C02S

CLK x3 Oscillator (25.175 MHz)

O
sc

ill
at

or
 (1

6
M

Hz
)

Vi
de

o
ci

rc
ui

t
(F
AT
-S
CU

N
K

+
FA
T-
CA

VI
A)

Tr
an

sc
ei

ve
rs

/
Bu

ff
er

Keyboard

Buzzer

µSD

Expansion
card(s)

Monitor

CT
RL

Board overview

7/22/23 7:39:06 PM The Byte Attic's CERBERUS 2100™ Manual 9

FAT-CAVIA™

25.175 MHz
oscillator

FAT-SCUNK™

FAT-
SPACER™

W65C02S

FAT-CAT™

16 MHz
oscillator

DP Video
SRAM (2 KB)

DP Character
SRAM (2 KB)

32 KB SRAM
(28 KB addressable)

High memory

Z80

Expansion
slot

Expansion
transceivers/

buffer

Level-shifter
for µSD card

3.3V
regulator for

µSD card

32 KB SRAM
Low memory

Power
connector

(USB-C)

Keyboard
connector

(USB-A)

FAT-CAT™ overview

• An ATmega328PB microcontroller
configured to use a strong external
oscillator (16 MHz)

• FAT-CAT is CERBERUS 2100’s system
master: it runs the BIOS code from its
onboard Flash memory and controls the
CPUs and expansion

• The BIOS code is written in C and
compiled under the Arduino IDE

• Except for video, FAT-CAT performs all
I/O functions: file system operations,
keyboard & expansion control, and
sound output

• FAT-CAT determines the CPU clock
frequency (4 or 8 MHz)

• Because of its serial nature, FAT-CAT is
slow compared to the CPUs, but
excels in flexibility and is therefore
suitable for I/O operations & global
system control

• FAT-CAT is capable of DMA (Direct
Memory Access) through FAT-SPACER
• Although FAT-CAT is a serial

controller, through FAT-SPACER’s
internal shift registers it can access
both data and address buses

• The user can only access the CPUs
through FAT-CAT
• It resets, selects, starts, halts,

interrupts, passes on keyboard
inputs & delegates applications to
the CPUs via FAT-SPACER

FAT-SPACER™ overview

• FAT-SPACER is the glue that binds
together the components of the
computer proper

• Its design is the core of CERBERUS
2100’s architecture, enabling the
innovative multi-processor approach

• It replaces a standard control bus with a
fully-connected control network that
orchestrates the activity of the three
processors and four memories

• All control inputs and outputs of all ICs
in the computer proper are processed
by FAT-SPACER’s internal logic

• FAT-SPACER’s functions:
• Memory Selection: enabling the appropriate

memory IC depending on the contents of the
address bus

• Expansion trigger: generating the XSLC signal to
trigger the expansion, depending on the
contents of the address bus

• Read/Write control: generating the appropriate
write- and output-enable signals for the four
memory ICs

• Clock Management: generating and managing
the clocks for FAT-CAT, the two CPUs and the
expansion slot

• CPU Control: generating the signals to reset,
start, halt, tristate and interrupt the CPUs, based
on input from FAT-CAT

• Serial/Parallel Translation: translating FAT-CAT’s
serial data and addresses into parallel bus
accesses, and vice-versa

CERBERUS 2100™’s VGA mode

• CERBERUS 2100™ uses a standard VGA
mode with 640x480 screen pixels and a
25.175 MHz pixel clock

• But each CERBERUS pixel is a 2x2 matrix
of screen pixels

• CERBERUS 2100’s resolution is thus
320x240 pixels, or 40x30 characters of
8x8 pixels each

• This translation is achieved by sampling
each CERBERUS pixel four times: twice
horizontally and twice vertically

• Each of the 40x30 addresses in video
memory holds a byte that identifies a
character from the character set

• FAT-CAVIA reads out that byte, which
then becomes the 8 most-significant
bits of an 11-bit character memory
address

• FAT-CAVIA reads out the 8 bytes of the
corresponding character bitmap in
character memory by progressively
incrementing the 3 least-significant bits
of the address from 0 to 7

Video and character memory organization

7/22/23 7:39:06 PM The Byte Attic's CERBERUS 2100™ Manual 13

Address $F800
(start of first line)

Address $F828
(start of second line)

…
…

1st byte of character n’s bitmap

…
…

Video
memory

Character
memory

0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0

0 1 0 0 0 0 1 0

0 1 0 0 0 0 1 0

0 1 0 0 0 0 1 0

0 1 0 0 0 0 1 0

0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0

First byte of
character n’s
bitmap

Eighth byte of
character n’s
bitmap

…

Ex
am

pl
e

ch
ar

ac
te

r b
itm

ap

Pointer to
char mem

Pointer to

char mem

SCREEN
(each screen position corresponds to an
address in video memory, which in turn

contains a character code byte identifying
a segment of character memory that

contains the corresponding character bitmap)

Line 1

Line 2

Line 30

Co
lu

m
n

1

Co
lu

m
n

2

Co
lu

m
n

3

Co
lu

m
n

4

Co
lu

m
n

39

Co
lu

m
n

40

…

…

ADDR
$F800

ADDR
$F801

ADDR
$F802

ADDR
$F803

ADDR
$F826

ADDR
$F827

ADDR
$F828

ADDR
$F829

ADDR
$F82A

ADDR
$F82B

ADDR
$F84E

ADDR
$F84F

ADDR
$FC88

ADDR
$FC89

ADDR
$FC8A

ADDR
$FC8B

ADDR
$FCAE

ADDR
$FCAF

2nd byte of character n’s bitmap

1st byte of character (n+1)’s bitmap

8th byte of character n’s bitmap

…
…

2nd byte of character (n+1)’s bitmap

8th byte of character (n+1)’s bitmap

Video circuit architecture

1/28/24 2:52:29 AM The Byte Attic's CERBERUS 2100™ Manual 14

DP
Video
SRAM

DP
CHAR
SRAM

Vi
de

o
m

em
or

y
ad

dr
es

s
(1

1
bi

ts
)

Character
code byte

Character memory
address (11 bits)

Character bitmap byte

FAT-CAVIA clock (CCLK)

Pixel clock, or PCLK (25.175MHz)

An
al

og

HSync
VSync

R

CCLK = 1/16 of PCLK
SRCLK = 1/2 of PCKL

Character address increment
3 bits

8 bits

FAT-CAVIA
reset (CRST)

Shift register
clock (SRCLK) G

B

Character
code byte

CE

CE

CE (Chip Enable)

8
bits

Co
lo

r
pr

oc
es

sin
g

FAT-SCUNK
(ATF1508AS-7AX100)
Frame scan counters

FAT-CAVIA
(ATF1508AS-7AX100)

Video memory address
and character address

counters

FAT-CAVIA™ overview

• FAT-CAVIA continuously scans all
addresses of video memory, as well as
the corresponding addresses in
character memory

• Each 40-character line in video memory
is scanned 16 times per frame
• 8 bytes per character times 2

passes per byte, so to double-
sample it vertically

• Each read from video memory produces
a character code byte that constitutes
the 8 most-significant bits of the
corresponding 11-bit character memory
address

• FAT-CAVIA uses a counter to produce
the 3 least-significant bits of the 11-bit
address, so to scan all 8 bytes of the
corresponding character bitmap in
character memory

• Since each character memory read
leads to 8 pixels (i.e. a byte from the
character bitmap), which are then
double-sampled horizontally, FAT-
CAVIA’s clock (CCLK) is 1/16 of the pixel
clock (PCLK)

• FAT-CAVIA also passes on the character
code byte to FAT-SCUNK for color
processing (each character code is given
a specific color by FAT-SCUNK)

FAT-SCUNK™ overview

• Each video frame consists of 480 pixel
lines and is followed by a vertical blanking
interval equivalent in timing to an
additional 45 lines

• Each pixel line consists of 640 screen
pixels followed by a horizontal blanking
interval equivalent in timing to an
additional 160 screen pixels

• Both the vertical and horizontal blanking
intervals encompass synchronization
pulses

• FAT-SCUNK is responsible for counting all
the relevant intervals and producing the
synchronization pulses

• It also generates the FAT-CAVIA clock
(CCLK) from the pixel clock (PCLK) using an
internal clock divider

• It features an internal 8-bit shift register,
wherein each byte read out from
character memory is temporarily stored

• It then shifts each bit of that byte out to
the RGB lines of the VGA connector,
according to a shift register clock (SRCLK)

• SRCLK is generated internally by FAT-
SCUNK, through a clock divider, and is ½ of
PCLK so to horizontally double-sample
each bit

• Each bit shifted out to the RGB lines is
given a specific color, which depends on
the character code it corresponds to

• Up to 8 colors can be displayed
simultaneously on the screen

FAT-SCUNK: action timing

7/26/23 4:20:11 PM The Byte Attic's CERBERUS 2100™ Manual 17

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

S3 S2 S1 S0 Action taken by FAT-SCUNK

Load current character byte into shift register
CAVIA clock tic to go to next character byte
Shift right

Shift right

Shift right

Shift right

Shift right

Shift right

Shift right

Corresponding hardware description
(see FAT-SCUNK.PLD file)

CCLK = !S3 & !S2 & S1 & !S0;

ShiftRegister.d = (!S3 & !S2 & !S1) & CharByteMirrored #
!(!S3 & !S2 & !S1) & ShiftOneRight;

ShiftRegister.ck = S0;

States of
internal counter

Standard VGA signal

7/22/23 7:39:06 PM The Byte Attic's CERBERUS 2100™ Manual 18

SCREEN
640 x 480 pixels

4 x 3 aspect ratio

480

490

492

525

Pi
xe

l l
in

es

800656640 7520
Pixel clock cycles

Horizontal
Sync
Pulse

Vertical
Sync
Pulse

Pixel clock: 25.175 MHz

Colors

• The character memory only contains
binary character bitmaps

• The background color of all characters is
black (corresponding to 0 in the bitmap)

• But FAT-SCUNK receives from FAT-CAVIA
the character code of the character
currently being displayed, so it can assign
a different foreground color (1 in the
bitmap) per character, which allows for up
to 8 colors (including black and white)
simultaneously displayed on the screen

• Most characters (including all text ones)
are only displayed with white as
foreground color (see figure above)

• Most graphics characters, however, have
different foreground colors, with 4
different character codes corresponding
to each of green, red, blue, yellow, cyan,
and magenta (see figure above)

• Since all characters in CERBERUS 2100 are
redefinable on-the-fly, programmers have
at least 4 different redefinable characters
for each color

• Color assignments to specific character
codes is hardware-defined and can only
be changed by reprogramming FAT-
SCUNK, not from software

Color maps

• CERBERUS 2100 assigns foreground
colors to character codes, not screen
regions (the latter is what is called a
color map, such as in the ZX Spectrum)

• However, color maps are possible: FAT-
CAVIA and FAT-SCUNK can be
reprogrammed for this purpose

• Instead of passing the current character
code to FAT-SCUNK, FAT-CAVIA must be
reprogrammed so to pass the address in
video memory currently being scanned

• This address can then be used in the
logic equations for the signals RED,
GREEN and BLUE in the FAT-SCUNK
hardware description file
(FATSCUNK.PLD)

• This way, a given screen position will
have a unique foreground color,
regardless of what character occupies it

• Doing this may be a fun and
educational way to experiment with
programming CPLDs, as the results are
immediately visible on the screen

Programming
instructions

(Re)programming the CPLDs: preparation

1. If you bought a ready-to-use CEBERUS 2100™ and
are not modifying the CPLD circuits, you may skip
this and the next page

2. Otherwise, you will need the following tools:
• Microchip ATDH1150USB JTAG USB ISP cable
• Microchip ATMISP v7.3 or later, freely-

downloadable in-system programing
software:
https://www.microchip.com/en-
us/products/fpgas-and-plds/spld-cplds/pld-
design-resources

3. Connect one end of the USB cable that
accompanies the ATDH1150USB to the ‘USB’ port
of the JTAG box, and the other end to your
Windows PC

4. Connect one end of the 10-wire flat cable that
accompanies the ATDH1150USB to the ‘JTAG A’
port of the JTAG box (see picture)

https://www.microchip.com/en-us/products/fpgas-and-plds/spld-cplds/pld-design-resources

(Re)programming the CPLDs

5. Connect the free end of the 10-wire flat cable to the appropriate
JTAG header on the CERBERUS 2100™ board (each of FAT-SCUNK,
FAT-CAVIA and FAT-SPACER has a marked 10-pin JTAG header
close to it)

6. Connect CERBERUS 2100™ to a USB power source via the USB-C
connector and turn it on

7. In your Windows PC, open ATMISP and click:
File → New

8. In the pop-up window, enter 1 device and click OK

9. In the new pop-up window, under Device Name choose:
ATF1508AS

10. Under JTAG Instruction choose: Program/Verify

11. Next to JEDEC File click Browse and choose the appropriate
.jed file from CERBERUS 2100’s distribution (e.g. choose FAT-
SPACER.jed to program FAT-SPACER), click OK

12. Click Run and wait for completion

13. Turn CERBERUS 2100™ off

14. Repeat the above for FAT-SCUNK, FAT-CAVIA and FAT-SPACER,
repositioning the 10-wire flat cable accordingly each time

Programming FAT-CAT: preparation

1. If you bought a pre-programmed CERBERUS
2100™, it already has a bootloader burned in
it, so you may skip ahead to step 18

2. Otherwise, you will need:
• An Arduino UNO board (with USB cable)
• An Arduino IDE installation on your PC:

https://www.arduino.cc/en/software
• 5 male-to-female jumper wires
• A 10µF capacitor rated for 6.3V or higher

3. Make sure FAT-SPACER is already
programmed, for without it you won’t be able
to burn the bootloader, as FAT-CAT won’t be
getting a clock

https://www.arduino.cc/en/software

Burning the bootloader

4. Connect the Arduino UNO to your
computer (via USB) and launch the
Arduino IDE

5. In the Arduino IDE, load:
File → Examples →
11.ArduinoISP → ArduinoISP

6. Compile and upload the
ArduinoISP sketch to the Arduino
UNO

7. When done, disconnect the Arduino
UNO from your PC

Burning the bootloader (cont.)

8. Set up the cables as shown in the pictures
• Connect the 10µF capacitor between GND

and RESET of the Arduino UNO (watch out
for the polarity!)

• Connect pins 13 to 10 of the Arduino Uno
respectively to pins SCK, MISO, MOSI, and
RST of the ‘BOOTLD’ header on the
CERBERUS 2100™ board

• Connect GND on the Arduino Uno to the
GND pin of the BOOTLD header

• You do not need to connect the 5V line

9. Install MCUdude’s MiniCore library in the
Arduino IDE, following the instructions
provided on the library’s repository at:
https://github.com/MCUdude/MiniCore

10. Reconnect the UNO to your PC

https://github.com/MCUdude/MiniCore

Burning the
bootloader (cont.)

11. From the Arduino IDE, select:
Tools → Board →
MiniCore → ATmega328

12. Set the options as per the picture to the right

13. Still from the Arduino IDE, change the COM port
to the one active in your case:
Tools → Port → (active port)

14. Now select:
Tools → Programmer →
Arduino as ISP

15. Connect CERBERUS 2100™ to a USB power source
via the USB-C connector and turn it on

16. And finally:
Tools → Burn Bootloader

17. After completion, turn CERBERUS 2100™ off and
disconnect the Arduino UNO from your PC

(Re)programming the BIOS

18. You will now need:
• An AZDelivery FTDI Adapter FT232RL USB to TTL

Serial (or equivalent)
• A standard USB-A to mini-USB cable

19. Remove the voltage jumper from the FTDI adapter (no
voltage selected)

20. Connect the FTDI adapter to your PC via the USB cable

21. Connect the FTDI adapter to the FTDI port of the
CERBERUS 2100™ board, facing up
(see picture to the right)

22. In the Arduino IDE, open the
CERBERUS_2100_BIOS.ino sketch in the
directory CAT/CERBERUS_2100_BIOS/
of the CERBERUS 2100™ distribution

23. Make sure the directory src/ of the distribution is
next to the sketch

24. Connect CERBERUS 2100™ to a USB power source via
the USB-C connector and turn it on

(Re)programming the BIOS (cont.)

25. Select the now-active COM port:
Tools → Port → (active port)

26. Compile and upload the sketch
(you may now hear CERBERUS 2100™ beep, which is
normal; if it annoys you, disable the buzzer by placing a
jumper on the BUZZ-DIS header)

27. Turn CERBERUS 2100™ off

28. Disconnect the FTDI adapter from the CERBERUS 2100™
board

29. Copy the files in the Ceberus uSD card files/
directory of the distribution to a FAT32-formatted, class-10
(or higher) µSD card

30. Insert the µSD card into CERBERUS’s µSD card adapter

31. Connect CERBERUS 2100™ to a VGA monitor, PS/2-
compatible keyboard and a USB power source

32. Turn CERBERUS 2100™ on

33. You’re done! CERBERUS 2100™ should now boot normally
and display the start-up screen shown in the picture to the
right

User’s
manual

Powering CERBERUS 2100™ on

1. To boot properly, CERBERUS 2100™ needs to
have a µSD card inserted in it, loaded with the
files in the Ceberus uSD card files/
directory of the distribution

2. If CERBERUS 2100™ finds no µSD card, it will
produce a repeating beep to indicate an error,
and show garble on the screen

3. If a µSD card is found, but lacks the
chardefs.bin file, CERBERUS 2100™ will
beep once and display garble

4. The correct startup screen is shown in the
picture

The BIOS screen

• The user interacts with CERBERUS 2100™
through the BIOS Screen, which is displayed
upon startup

• The BIOS Screen has two segments:
the Main Window above and
the Command Window below

• The Command Window is further divided into
two segments: the Message Line above and the
Edit Line below

• CERBERUS 2100™ displays system messages to
the user in the Message Line

• The user gives CERBERUS 2100™ commands by
typing them out in the Edit Line

• Type ‘help’ or ‘?’ to display a list of the
commands available, which will be discussed in
more detail in the next pages

BIOS screen Command
WindowMain Window

Message Line Edit Line

Commands: basics

• Typing the up-arrow fills the Edit Line
with the last command typed

• Typing the down-arrow clears the
Edit Line

• run executes the code currently in the
code area (starting at address $0205)
on the selected CPU
• If the code in memory is meant for

one of the CPUs, but you try to
execute it on the other, the result
will be unpredictable

• If the CPU is running code, press F12 to
return to the BIOS Screen

• cls clears the Main Window

• reset resets CAT and the two CPUs,
redraws the startup screen, but does
not otherwise erase the contents of
memory

• 6502 selects the W65C02S CPU

• z80 selects the Z80 CPU

• fast sets the CPU clock at 8 MHz

• slow sets the CPU clock at 4 MHz

• help or ? displays a summary of the
commands available

Commands: file manipulation

• All numbers typed into the Edit Line are
assumed to be hexadecimal
• Instead of typing ‘0xFF’ or ‘$FF’, type

simply ‘FF’

• File names are not case-sensitive, so
‘CODE.bin’ and ‘code.bin’ will be the
same file

• load FILE ADDR loads the contents of a
binary file named FILE from the µSD card
into memory, starting from the address
ADDR (in hex)
• If ADDR is not provided, CERBERUS

2100™ will default to $0205, the start
of the code area

• The file name FILE needs to be typed
out in full

• Example: ‘load cell6502.bin’

• save ADDR1 ADDR2 FILE saves the
contents of memory from ADDR1 to ADDR2,
inclusive, to a binary file named FILE in the
µSD card
• Example:

‘save 205 2ff program.bin’

• del FILE deletes the file named FILE
from the µSD card
• The name FILE needs to be typed out

in full
• Example: ‘del typez80.bin’

• dir lists the files on the µSD card
• CERBERUS’s file system, built into the

BIOS, does not support sub-directories,
so all files must be in the root of the
µSD card

Commands: editing memory

• list ADDR displays the contents of
memory from address ADDR onwards,
until the Main Window is filled up
• If ADDR is not provided, CERBERUS

2100™ will default to $0000
• Example: ‘list F800’

• Again, all numbers typed into the Edit
Line are assumed by CERBERUS 2100™
to be hexadecimal
• Instead of typing ‘0xFF’ or ‘$FF’, type

simply ‘FF’

• 0xADDR BYTE(s) inserts the list of
bytes BYTE(s) (wherein individual
bytes are separated by spaces or
commas) into memory, starting from
address ADDR
• The list of bytes can be as long as it fits

in the Edit Line, or have a single byte
• You can use this command to write

directly into video and character
memories, which is handy to alter and
see the character definitions

• Try out these cool examples
(after ‘cls’):
‘0xF82A 00 01 02 03 04 05 06 07’
‘0xF000 FF 00 FF 00 FF 00 FF 00’

Commands: editing memory (cont.)

• move ADDR1 ADDR2 ADDR3 copies
the contents of memory in the segment
between ADDR1 and ADDR2, inclusive,
to the segment starting at ADDR3
• Example:

‘move 0000 00FF FF00’

• testmem writes a sequence of
numbers into low memory, then reads
it from low memory and writes it to
high memory, then reads it from high
memory and writes it to video memory,
where the sequence is interpreted as
characters and displayed
• This is a non-exhaustive test of the

memory subsystem
• It also displays the character set, as

currently defined in character
memory, on the screen

The character set

• CERBERUS 2100™ allows for 256 different character
definitions, each identified by an extended ASCII value
or character code, ranging from 0 to 255

• The picture illustrates the default character set, listed
from 0 to 255 from the top left
(it repeats itself after it ends)

• The character definitions are stored in addresses $F000
to $F7FF (inclusive)

• Each character is an 8x8 bitmap, and thus requires 8
bytes in its definition

• The bitmap of character 0 (the cursor character) is
stored in addresses $F000 to $F007

• The bitmap of character 1 is stored in addresses $F008
to $F00F, and so on

• All character definitions can be modified by the user
from the BIOS Screen or dynamically, from a program
running on one of the CPUs

• Try this command, which changes the cursor:
‘0xF000 FF 00 00 00 00 00 00 FF’

• To reload the standard definitions again, type:
‘reset’ or ‘load chardefs.bin F000’

The memory map
0000
0001
0002

0066
0067

00FF

0100

01FF

0205

EFFD

0200
0201
0202
0203
0204

F000

F7FF

F800

FCAF

FCB1

FFF9

FFFA
FFFB
FFFC
FFFD
FFFE
FFFF

FCB0

Z80’s ‘reset vector’
(JP $0205)

Z80’s NMI service
routine (RETN)

Inbox Data
Reserved for BIOS extensions

Start of code area

W65C02S’s NMI service
routine (RTI)

W65C02S’s NMI
vector (FCB0)

W65C02S’s reset
vector (0205)

W65C02S’s zero page

W65C02S’s stack area

User memory block 1

User memory block 2

Character memory

Video memory

W65C02S’s reset and
Interrupt vectors

address

Outbox Data
Inbox Flag

Outbox Flag

EFFE
EFFFReserved for expansion

Xmail

• The diagram shows CERBERUS 2100™’s memory map

• Address $0205 is the start of the code area

• Addresses $0200 and $0202 are flags: FAT-CAT and CPU set
these flags to inform each other that a byte is being passed

• Addresses $0201 and $0204 are data boxes: they contain
the actual byte that is being passed between FAT-CAT and CPU

• When the address Xmail ($EFFE) is written to, FAT-SPACER
pulls XSLC (see Expansion Slot section ahead) low for a cycle,
to alert the expansion card that there is data for it in memory

• Any byte poked into the video area will be interpreted as a
character code and the corresponding character bitmap will
be displayed on the screen

• Any byte poked into the character memory will be interpreted
as an update to a character definition

• The largest contiguous area available for programs and data is
the user memory block 1, which resides physically in the two
32KB SRAM ICs

• The user memory block 2 is also available, and resides
physically in the DP Video SRAM (the screen does not use all
the addresses in this chip)

Test programs

• CERBERUS 2100™’s distribution contains four
test assembly programs:
• TYPE6502.bin
• TYPEZ80.bin
• CELL6502.bin
• CELLZ80.bin

• The corresponding source (.asm) files are
also provided in the in the directory
CERBERUS Applications Source Code/
of the distribution

• The ‘TYPE’ application simulates a typewriter
on the screen: it prints out, in sequence, the
keys you press on the keyboard
• It tests the interface between FAT-CAT (which

reads the keyboard) and the active CPU
(which receives the character code read via
memory-mapped I/O) during application
execution

• The CELL application is a Wolfram Rule-30
linear cellular automaton that fills the screen
with fractal, vertical-scrolling patterns
• It tests the speed of CERBERUS 2100’s

software-based scrolling

• The CELL6502.bin code is slightly more
sophisticated then the CELLZ80.bin code
• The W65C02S version also updates the

character definitions in the character
memory on-the-fly, during execution

• The BIOS will not prevent you from trying to
run W65C02S code on the Z80, or Z80 code
on the W65C02S
• If you accidently do so, the result is

unpredictable, but won’t damage anything

Tips and tricks

• You can load new programs by turning
CERBERUS 2100™ off, removing the µSD
card and copying new files to it from
your PC

• Remember that you can control the
CPU clock speed from the BIOS Screen:
if a program is running too slow or—
which is more likely—too fast, you can
partly compensate for it with the slow
and fast commands

• Clean the CERBERUS 2100™ board only
with ESD-safe brushes and/or ESD-safe
compressed gas

• There are tiny, modern PS/2-compatible
USB keyboards—such as the MC Saite—
which can be used with CERBERUS
2100™

• Monitor updates to the CERBERUS
2100™ distribution files for firmware
improvements and eventual bug fixes

• Since FAT-SPACER, FAT-SCUNK and FAT-
CAVIA are CPLDs, even hardware
updates to the heart of CERBERUS
2100™ can be performed without
physical modifications to the board

Notes for
programmers

More memory map considerations
0000
0001
0002

0066
0067

00FF

0100

01FF

0205

EFFD

0200
0201
0202
0203
0204

F000

F7FF

F800

FCAF

FCB1

FFF9

FFFA
FFFB
FFFC
FFFD
FFFE
FFFF

FCB0

Z80’s ‘reset vector’
(JP $0205)

Z80’s NMI service
routine (RETN)

Inbox Data
Reserved for BIOS extensions

Start of code area

W65C02S’s NMI service
routine (RTI)

W65C02S’s NMI
vector (FCB0)

W65C02S’s reset
vector (0205)

W65C02S’s zero page

W65C02S’s stack area

User memory block 1

User memory block 2

Character memory

Video memory

W65C02S’s reset and
Interrupt vectors

address

Outbox Data
Inbox Flag

Outbox Flag

EFFE
EFFFReserved for expansion

Xmail

• The BIOS will automatically put a JP $0205 on addresses $0000,
$0001, and $0002 to simulate a reset vector for the Z80

• The BIOS will automatically put a simple RETN (return) instruction
on addresses $0066 and $0067, where the Z80 looks for its non-
maskable interrupt service routine

• All I/O between FAT-CAT and CPU is memory-mapped to addresses
$0201 (Outbox from FAT-CAT to CPU) and $0203 (Inbox to FAT-CAT
from CPU)

• Address $0205 is the start of the code area for both CPUs

• The BIOS will store an RTI (return from interrupt) on address
$FBC0, which is the non-maskable interrupt service routine for the
W65C02S

• The BIOS will ensure that the W65C02S’s NMI and Reset vectors are
set according to the above

• The largest contiguous area of memory available for code and
variables is the user memory block 1

• User memory block 2, physically residing in the DP Video SRAM, is
also available to programmers

• Z80 coders can use the address space of the W65C02S’s zero page
and stack area as regular memory (except for addresses $0000 to
$0002, $0066 and $0067, which are reserved)

• Z80 coders can also use the top 6 addresses as regular memory
(which are otherwise reserved for the W65C02S’s reset and
interrupt vectors)

Physical memory map

7/26/23 4:20:11 PM The Byte Attic's CERBERUS 2100™ Manual 43

$0000

$7FFF

$8000

$EFFF

$F000

$F7FF

$F800

$FFFF

Low memory (32KB SRAM IC)

High memory (32KB SRAM IC)

Video memory (2KB DP SRAM IC)

Character memory (2KB DP SRAM IC)

Video memory organization

7/22/23 7:39:06 PM The Byte Attic's CERBERUS 2100™ Manual 44

SCREEN
(each video memory address contains

a character code byte identifying an address
range in character memory, where the

corresponding character bitmap resides)

Line 1

Line 2

Line 30

Co
lu

m
n

1

Co
lu

m
n

2

Co
lu

m
n

3

Co
lu

m
n

4

Co
lu

m
n

39

Co
lu

m
n

40

…

…

ADDR
$F800

ADDR
$F801

ADDR
$F802

ADDR
$F803

ADDR
$F826

ADDR
$F827

ADDR
$F828

ADDR
$F829

ADDR
$F82A

ADDR
$F82B

ADDR
$F84E

ADDR
$F84F

ADDR
$FC88

ADDR
$FC89

ADDR
$FC8A

ADDR
$FC8B

ADDR
$FCAE

ADDR
$FCAF

More programming notes

• CERBERUS 2100™ supports two instruction
sets: the Z80’s and the W65C02S’s
• But applications must target one or the

other CPU, not both concurrently

• FAT-CAT handles keyboard inputs when a
CPU is running an application
• Whenever a key is pressed, FAT-CAT

halts the CPU, pokes a 1 into the
Outbox Flag address, pokes the
corresponding character code into the
Outbox Data address, releases the CPU,
and then issues a non-maskable
interrupt (NMI)

• Applications should always clear the Outbox
Flag by poking a 0 into it immediately upon
reading out the Outbox Data

• The BIOS defines the non-maskable
interrupt service routines as mere returns
from interrupt (RTI for the W65C02S and
RETN for the Z80)
• An application running on a CPU

must read keyboard inputs by polling
the Outbox Flag to see if there is a
new input from the keyboard, and
then reading out the inputted
character code from the Outbox Data
address

• If you want to use more elaborate NMI
service routines for keyboard input—
instead of Outbox Flag polling—you will
need to adapt the BIOS code (which is
simple to do, since the BIOS is an Arduino
sketch written in C)

More programming notes (cont.)

• Since FAT-CAT also issues a non-
maskable interrupt upon updating the
Outbox Data and Outbox Flag
addresses, wait-for-interrupt
instructions (WAI for the W65C02S,
HALT for the Z80) are supported

• Maskable interrupts are not supported
• Non-maskable interrupts are edge-

triggered and, therefore, much
simpler to handle in the hardware

• CERBERUS 2100™ is an educational
platform unlikely to be used for
real-time applications, so the lack
of maskable interrupts shouldn’t
be a problem

• The Z80’s port instructions (such as IN
and OUT) are not supported
• All I/O is memory-mapped,

through the Outbox and Inbox
Data addresses

• The .asm and .hex files of the
example applications are provided in
CERBERUS 2100’s distribution, which
illustrate how to deal with Outbox Flag
polling and wait-for-interrupt
instructions in both CPUs

• I also recommend that programmers
writing applications for CERBERUS
2100™ acquaint themselves with the
BIOS code, available in the distribution

Generic cross-assembler considerations

• Your code should always start at address
$0205, even for the Z80
• The BIOS will put a JP $0205 on

address $0 to simulate a reset vector
• You should tell the assembler that

your code starts at $0205

• CERBERUS 2100’s loader is very simple: it
merely reads the binary file’s bytes and
stores them sequentially in memory, from
address $0205 onwards
• Only addresses and opcodes should

be part of the assembled machine
code!

• No loader directives are supported

• See the files in the folder

/CERBERUS Applications Source Code

for examples of assembly programs for
both CPUs

• If you want to change character
definitions as part of your code, you
should do it with load (Z80) or store
(W65C02S) assembly instructions, as
CERBERUS 2100’s loader will not
recognize address directives

Expansion
slot

Expansion slot overview

• CERBERUS 2100™ has a 40-pin expansion slot

• Cards connected to the expansion slot can
have Direct Memory Access (DMA) to all of the
system’s memories
• Therefore, the cards can have CPUs and

microcontrollers; they don’t need to be
passive-only circuits

• All communication between an expansion card
and the rest of the system is memory-mapped

• The expansion I/O protocol is generic, so cards
can work with either CPU

• The expansion slot’s pinout is marked directly
on the board’s silkscreen, but is repeated here
for convenience

XCLK
5V

XBUSREQ
XBUSACK

XRD
XA0
XA2
XA4
XA6
XA8
XA10
XA12
XA14
XD0
XD2
XD4
XD6
5V
5V

XIN

GND
XE
XSLC
XIRQ
XWR
XA1
XA3
XA5
XA7
XA9
XA11
XA13
XA15
XD1
XD3
XD5
XD7
GND
GND
GND

Expansion slot signals overview

• All control signals are active-low
• Inputs/Outputs

• XA0 to XA15: address bus lines, as
exposed to the expansion slot through
transceivers

• XD0 to XD7: data bus lines, as exposed to
the expansion slot through a transceiver

• Inputs from the system, into the
expansion:
• XCLK: the CPU clock (4 or 8MHz, as

selected by FAT-CAT)
• XBUSACK: acknowledgment from FAT-CAT

that the CPUs are tristated and the
system’s buses are now available to the
expansion card

• XSLC: a strobe from FAT-SPACER indicating
that the Xmail address in high memory
has been written to and, therefore, there
is data in memory for the expansion card

• Outputs from the expansion, towards
the system
• XBUSREQ: indicates that the expansion

card is requesting (DMA) access to the
system

• XE: enables the data and address bus
transceivers so the expansion card can
sniff the buses or perform DMA

• XIRQ: interrupt strobe that signals to the
rest of the system that the expansion card
has put something in memory for it

• XRD: memory read strobe from a card
• XWR: memory write strobe from a card
• XIN: unused output connected to FAT-

SPACER, so the expansion I/O protocol can
be extended by users

DMA read procedure & timing diagram

The expansion card should perform the
following steps to read from system memory:

1. Wait for XSLC to pulse low, signaling there
is data in memory for the expansion card

2. Request access by pulling XBUSREQ low

3. Set address value locally, in the card

4. Wait until XBUSACK goes low

5. Pull XE low to drive the system’s address
bus with the locally set address value

6. Wait for the system’s address bus to
stabilize

7. Pull XRD low to trigger memory output

8. Wait for the system’s data bus (output
from system memory) to stabilize

9. Read in the system’s data bus contents

10. Push XRD, XE and XBUSREQ back high (in
this order) to complete the read cycle

Time

XBUSREQ

XBUSACK

XE

XRD

ADDR
BUS

DATA
BUS

XSLC

DMA write procedure & timing diagram

The expansion card should perform the
following steps to write to system memory:

1. Request access by pulling XBUSREQ low

2. Set address and data values locally

3. Wait until XBUSACK goes low

4. Pull XE low to drive the system’s address
and data buses with the locally set values

5. Wait for the buses to stabilize

6. Pull XWR low to trigger memory write

7. Wait for memory write cycle to complete

8. Push XWR, XE and XBUSREQ back high (in
this order) to complete the write cycle

9. Wait for XBUSACK to go back high

10. Pulse XIRQ low to indicate to the rest of the
system that the expansion card has written
something in system memory

Time

XBUSREQ

XBUSACK

XE

XWR

ADDR
BUS

DATA
BUS

XIRQ

Bus sniffing

• A card on the expansion slot can ‘sniff’
the contents of both address and data
buses without requesting access
through XBUSREQ or being granted
such access through XBUSACK

• To do so, the card can simply pull XE
low, so to enable the bus transceivers
• There is no need for a read strobe XRD

• The CPU clock signal XCLK can then be
used for synchronization, allowing the
values on the data and address buses to
be sampled when they are stable

• Sniffing mode allows for passive
expansion cards that simply monitor
CERBERUS 2100™’s internal bus traffic

• By monitoring when writes are done to
video and character memory, it is
conceivable that, for instance,
alternative video cards could be built
• Even though the read and write

strobes within the system are not
available in the expansion slots,
access to video and character
memory addresses from the
computer proper are almost
always write accesses; and even if
they are read access, the data bus
will still correctly reflect the
contents of the respective address

Notes for card designers

• The expansion I/O protocol is
asynchronous, so you are not required
to use XCLK; your card can use its own
crystal/oscillator, as long as you remain
alert to the memories’ access timings
(if your card’s clock is slower than
10MHz, you need not worry about it)

• All expansion control signals are already
pulled up with 10KΩ, so there’s no need
to pull them up again

• The data & address buses are also
pulled up with 10KΩ, but only on the
system’s side of the bus transceivers;
therefore, your card should pull up its
own internal data & address lines

• All signals are referenced to 5V at
CMOS levels

• Remember that all expansion control
signals are active-low

• XSLC is a pulse, so polling it won’t work
• You must connect it either to a pin

of a microcontroller that has an
edge-triggered interrupt attached
to it…

• …or to a set/reset flip-flop, which
can in turn be cleared by your logic
once the transition of XSLC has
been handled; this way you can
poll the state of the flip-flop to
know if XSLC has gone low

Notes for card programmers

• The top of high memory (address $EFFF)
is reserved for the expansion, so feel free
to use it as you wish

• All communication to and from the system
should be mapped onto the system’s
memories
• If your card has on-board memory,

that local memory should not be
accessed directly by a CPU, but only
by the card itself

• If your card has on-board sensors,
then the results of their
measurements should be written to
system memory before they can be
accessed by a CPU

• XSLC goes low when the Xmail address is
written to, but that does not mean that
only the byte written to Xmail can be
communicated to the expansion card
• As long as the card and the code

running on a CPU are compatible, a
protocol can be software-defined so
the card reads an entire block of
memory at each read cycle

• A final write to Xmail by a CPU can
then work as a trigger for that read
cycle

• The same rationale applies to the
card’s write cycles: they don’t need
to be restricted to a single byte

CPLD-based
design

CPLD design notes

• These brief notes aim to merely
complement the extensive commentary
embedded in the .PLD files provided
with CERBERUS 2100’s distribution, which
contain the full hardware description of
the three custom ICs

• The CUPL hardware design language used
is extensively described in the CUPL
documentation available online

• The CUPL software is freely-available, so
you can experiment with changing the
design of the custom chips, if you so dare

• Beware: the CUPL software doesn’t like
empty spaces in any directory or file
name, and will fail to find necessary files if
these empty spaces are used

• The pinouts of FAT-SCUNK, FAT-CAVIA and
FAT-SPACER can be seen in the respective
.fit files in the distribution

• Very briefly, here is the CUPL syntax:
• ‘&’ means a logical AND
• ‘#’ means a logical OR
• ‘!’ means a logical INVERSION
• ‘SIGNAL.t’ is the input to a toggle flip-

flop whose output is SIGNAL
• ‘SIGNAL.d’ is the input to a D flip-flop

whose output is SIGNAL
• ‘SIGNAL.ck’ is the clock input to a flip-

flop whose output is SIGNAL
• ‘SIGNAL.ce’ is the clock enable input to

a flip-flop whose output is SIGNAL
• ‘SIGNAL.ar’ is the asynchronous reset

input to a flip-flop whose output is
SIGNAL

• ‘SIGNAL.ap’ is the asynchronous preset
input to a flip-flop whose output is
SIGNAL

Schematics

V1.0, April 2021 The Byte Attic's CERBERUS 2100™ Manual 59

A A

B B

C C

D D

1

1

2

2

3

3

4

4

5

5

TITLE:
CERBERUS 2100 , power and interfaces REV: 1.0

Date: 2023-06-28

Sheet: 1/5
Drawn By: Bernardo Kastrup

Company: The Byte Attic

PCLK

VCC

RE
D

BC847C
Q1SBE

SRST

L77HDE15SD1CH4RHNVGA
VGA

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

10
10

11
11

12
12

13
13

14
14

15
15

MH1
MH1

MH2
MH2

VCC

MCLK

VCC

PC
LK

VCCBSMD1206-200-6V
F1

VCC

SN74LVC1G125DBVR
U4

O
E

1
A

2
G

N
D

3
Y

4
V
C
C

5 VCC
SN74LVC1G125DBVR

U3

O
E

1
A

2
G

N
D

3
Y

4
V
C
C

5 VCC
BP
CL
K

100nF
C1

100nF
C3

10Kľ
R2

10Kľ
R4

68ľ
R9

68ľ
R10

2.2kľ
R13

KH-TYPE-C-16P
USB-C

GNDA12
VBUSA9 SUB1A8 DN1A7 DP1A6 CC1A5 VBUSA4
GNDA1 GND B12

VBUS B9
SUB2 B8
DN2 B7
DP2 B6
CC2 B5

VBUS B4

GND B1

EP
1

EP
2

EP
3

EP
4

VBUS

VBUS VBUS

VBUS
VBUS

EEUFR0J471B
C10

1
2

5.1K
R11

5.1K
R8

25.175MHz
OSC1

OE#

OUTVDD

GND

16MHz
OSC2

VDD 4
OUTPUT 3GND2 Tri-state133ľ

R12

33ľ
R14

100nF
C7

100nF
C11

SO
U
N
D

VCCUPZ2012D601-2R0TF
FB1

33ľ
R3

292303-1
PS/2

VCC 1
D- 2

D+ 3
GND 4

10uF
C6

KDAT
KCLK

SN74LVC1G125DBVR
U2

O
E

1
A

2
G

N
D

3
Y

4
V
C
C

5
V
CC

SN74LVC1G04DBVR
U1

N
.C

1
A

2
G

N
D

3
Y

4
V
C
C

5

22-28-4020
BUZZ-DIS

11
22

10Kľ
R1

VCC

VCC

0402ESDA-05N

0402ESDA-05N

04
02

E
S

D
A

-0
5N

04
02

E
S

D
A

-0
5N

04
02

E
S

D
A

-0
5N

04
02

E
S

D
A

-0
5N

100nF
C4
VCC

SN74LVC1G125DBVR
U5

O
E

1
A

2
G

N
D

3
Y

4
V
C
C

5

G
RE
EN

04
02

E
S

D
A

-0
5N

100nF
C5
VCC

SN74LVC1G125DBVR
U6

O
E

1
A

2
G

N
D

3
Y

4
V
C
C

5

BL
U
E

470ľ
R5

470ľ
R6

470ľ
R7

HSP

VSP

SN74LVC1G125DBVR
U7

OE1
A2
GND3
Y4
VCC5

SN74LVC1G125DBVR
U8

OE1
A2
GND3
Y4
VCC5

VCC

100nF
C8

VCC

100nF
C9

UCLAMP0571P.TNT
CLAMP1

Ekulit RMP-14SP
BUZZER

- 2+1

FC-DA1608HRK-620D
PWR1

100nF
C2

V1.0, April 2021 The Byte Attic's CERBERUS 2100™ Manual 60

A A

B B

C C

D D

1

1

2

2

3

3

4

4

5

5

TITLE:
CERBERUS 2100 , video circuit REV: 1.0

Date: 2023-06-28

Sheet: 2/5
Drawn By: Bernardo Kastrup

Company: The Byte Attic

ATF1508AS-7AX100
FAT-SCUNK

I/O/PD11
I/O2
VCCIO3
I/O/TDI4
I/O5
I/O6
I/O7
I/O8
I/O9
I/O10
GND11
I/O12
I/O13
I/O14
I/O/TMS15
I/O16
I/O17
VCCIO18
I/O19
I/O20
I/O21
I/O22
I/O23
I/O24
I/O25

G
N

D
26

I/
O

27
I/

O
28

I/
O

29
I/

O
30

I/
O

31
I/

O
32

I/
O

33
V
C
C
IO

34
I/

O
35

I/
O

36
I/

O
37

G
N

D
38

V
C
C
IN

T
39

I/
O

40
I/

0/
PD

2
41

I/
O

42
G

N
D

43
I/

O
44

I/
O

45
I/

O
46

I/
O

47
I/

O
48

I/
O

49
I/

O
50

I/O 75
GND 74

I/O/TDO 73
I/O 72
I/O 71
I/O 70
I/O 69
I/O 68
I/O 67

VCCIO 66
I/O 65
I/O 64
I/O 63

I/O/TCK 62
I/O 61
I/O 60

GND 59
I/O 58
I/O 57
I/O 56
I/O 55
I/O 54
I/O 53
I/O 52

VCCIO 51

I/
O

10
0

I/
O

99
I/

O
98

I/
O

97
I/

O
96

G
N

D
95

I/
O

94
I/

O
93

I/
O

92
V
C
C
IN

T
91

IN
PU

T/
O

E2
/G

C
LK

2
90

IN
PU

T/
G

C
LR

89
IN

PU
T/

O
E1

88
IN

PU
T/

G
C
LK

1
87

G
N

D
86

I/
0/

G
C
LK

3
85

I/
O

84
I/

O
83

V
C
C
IO

82
I/

O
81

I/
O

80
I/

O
79

I/
O

78
I/

O
77

I/
O

76

71321LA55PPGI8
VIDEOMEM

A1L1
A2L2
A3L3
A4L4
A5L5
A6L6
A7L7
A8L8
A9L9
I/O0L10
I/O1L11
I/O2L12
I/O3L13
I/O4L14
I/O5L15
I/O6L16
I/O7L17
N/C18
GND19
I/O0R20
I/O1R21
I/O2R22
I/O3R23
I/O4R24
I/O5R25
I/O6R26 I/O7R 27N/C 28A9R 29A8R 30A7R 31A6R 32A5R 33A4R 34A3R 35A2R 36A1R 37A0R 38OER# 39A10R 40INTR# 41BUSYR# 42R/WR# 43CER# 44VCC 45CEL# 46R/WL# 47BUSYL# 48INTL# 49A10L 50OEL# 51A0L 52

71321LA55PPGI8
CHARMEM

A1L1
A2L2
A3L3
A4L4
A5L5
A6L6
A7L7
A8L8
A9L9
I/O0L10
I/O1L11
I/O2L12
I/O3L13
I/O4L14
I/O5L15
I/O6L16
I/O7L17
N/C18
GND19
I/O0R20
I/O1R21
I/O2R22
I/O3R23
I/O4R24
I/O5R25
I/O6R26 I/O7R 27N/C 28A9R 29A8R 30A7R 31A6R 32A5R 33A4R 34A3R 35A2R 36A1R 37A0R 38OER# 39A10R 40INTR# 41BUSYR# 42R/WR# 43CER# 44VCC 45CEL# 46R/WL# 47BUSYL# 48INTL# 49A10L 50OEL# 51A0L 52

OE

VBUSY
RWVM
CEVM

D7
D6
D5
D4
D3
D2
D1
D0

A10

A9
A8
A7
A6
A5
A4
A3
A2
A1 A0

VCC

CA0
CA1
CA2
CA3
CA4
CA5
CA6 CA7

VMA9
VMA8
VMA7
VMA6
VMA5
VMA4
VMA3
VMA2
VMA1
VMA0

VMA10

DPMCE

OE

RWCM
CBUSY

CECM

D0
D1
D2
D3
D4
D5
D6
D7

A0A1
A2
A3
A4
A5
A6
A7
A8
A9

A10

VCC
VCCVCC

CB7CB6
CB5
CB4
CB3
CB2
CB1
CB0

CMA0
CMA1
CMA2

CMA9
CMA8
CMA7
CMA6
CMA5
CMA4
CMA3

CMA10

DPMCE

C-TDI

C-TMS
C-TDO
C-TCK

VCC
S-TCK
S-TDO
S-TMS

S-TDI GND

VCC
GND

VCC

VCC

V
CC

V
CC

VCC

VCC

V
CC

V
CC

S-TDI

S-TMS

BP
CL
K

CCLK

S-TDO

S-TCK

VCC VCCVCCVCC

S-
TM

S

S-
TD
I

C-
TM

S

C-
TD
I

CB6
CB5
CB4
CB3
CB2
CB1
CB0

CB7

10Kľ
R19

10Kľ
R20

10Kľ
R21

10Kľ
R22

33ľ
R17

2.2K
R15 2.2K

R16

V
SP
H
SP

SR
ST

SB
E

CR
ST

D
PM

CE

B-3000N10P-0110
JTAG-CAVIA

11

10 10

33

8 855 6 6
77

4 4

99

2 2
B-3000N10P-0110
JTAG-SCUNK

11

10 10

33

8 855 6 6
77

4 4

99

2 2

ATF1508AS-7AX100
FAT-CAVIA

I/O/PD11
I/O2
VCCIO3
I/O/TDI4
I/O5
I/O6
I/O7
I/O8
I/O9
I/O10
GND11
I/O12
I/O13
I/O14
I/O/TMS15
I/O16
I/O17
VCCIO18
I/O19
I/O20
I/O21
I/O22
I/O23
I/O24
I/O25

G
N

D
26

I/
O

27
I/

O
28

I/
O

29
I/

O
30

I/
O

31
I/

O
32

I/
O

33
V
C
C
IO

34
I/

O
35

I/
O

36
I/

O
37

G
N

D
38

V
C
C
IN

T
39

I/
O

40
I/

0/
PD

2
41

I/
O

42
G

N
D

43
I/

O
44

I/
O

45
I/

O
46

I/
O

47
I/

O
48

I/
O

49
I/

O
50

I/O 75
GND 74

I/O/TDO 73
I/O 72
I/O 71
I/O 70
I/O 69
I/O 68
I/O 67

VCCIO 66
I/O 65
I/O 64
I/O 63

I/O/TCK 62
I/O 61
I/O 60

GND 59
I/O 58
I/O 57
I/O 56
I/O 55
I/O 54
I/O 53
I/O 52

VCCIO 51

I/
O

10
0

I/
O

99
I/

O
98

I/
O

97
I/

O
96

G
N

D
95

I/
O

94
I/

O
93

I/
O

92
V
C
C
IN

T
91

IN
PU

T/
O

E2
/G

C
LK

2
90

IN
PU

T/
G

C
LR

89
IN

PU
T/

O
E1

88
IN

PU
T/

G
C
LK

1
87

G
N

D
86

I/
0/

G
C
LK

3
85

I/
O

84
I/

O
83

V
C
C
IO

82
I/

O
81

I/
O

80
I/

O
79

I/
O

78
I/

O
77

I/
O

76

VMA10

VMA9

VMA8
VMA7
VMA6

VMA5
VMA4

VMA3
VMA2

VMA1
VMA0

C-TMS

C-TDI

CRST

VCC

VCC
V
CC

V
CC

C-TCK

C-TDO

VCC

VCC

CC
LK

VCCV
CC

CM
A
0

CM
A
1

CM
A
2

CA7
CA6

CA
5

CA
4

CA
3

CA
2

CA
1

CA
0

CM
A
3

CM
A
4

CM
A
5

CM
A
6

CM
A
7

CM
A
8

CM
A
9

CM
A
10

RED

GREEN
BLUE

FR
EE
5

FR
EE
4

FR
EE
3

FR
EE
2

FR
EE
1

FR
EE
5

FR
EE
4

FR
EE
3

FR
EE
2

FR
EE
1

FREE6
FREE7
FREE8

FREE6
FREE7
FREE8

FREE9

FREE9

FR
EE
10

FR
EE
10

10Kľ
R18

VCC

D
PM

CE

FR
EE
11

FREE11

FR
EE
12

FR
EE
12

V1.0, April 2021 The Byte Attic's CERBERUS 2100™ Manual 61

A A

B B

C C

D D

1

1

2

2

3

3

4

4

5

5

TITLE:
CERBERUS 2100 , computer proper REV: 1.0

Date: 2023-06-28

Sheet: 3/5
Drawn By: Bernardo Kastrup

Company: The Byte Attic

W65C02S6TQG-14
W65C02S

NMIB
1

SYNC
2

VDD
3

A0
4

A1
5

NC
6

A2
7

A3
8

A4
9

A5
10

A6
11

A
7

12

A
8

13

A
9

14

A
10

15

A
11

16

V
S
S

17

V
S
S

18

A
12

19

A
13

20

A
14

21

A
15

22

D7
23

D6
24

D5
25

D4
26

D3
27

D2
28

D1
29

D0
30

VDD
31

RWB
32

NC
33

B
E

34
PH

I2
35

S
O

B
36

PH
I2

O
37

R
ES

B
38

V
S
S

39
V
PB

40
R
D

Y
41

PH
I1

O
42

IR
Q

B
43

M
LB

44

Z84C0010AEG
Z80

CLK1

D09
D110

D27

D33 D42

D54
D65

D78

+5V6

NC11
INT#12
NMI#13
HALT#14
MREQ#15
IORQ#16
NC17
RD#18
WR#19
BUSACK#20
WAIT#21
BUSREQ#22 RESET# 23M1# 24REFH# 25GRN 26A0 27A1 28A2 29A3 30A4 31A5 32NC 33A6 34A7 35A8 36A9 37A10 38

A11 40A12 41A13 42A14 43A15 44

NC 39

Z
80

LQ
FP

ATF1508AS-7AX100
FAT-SPACER

I/O/PD11
I/O2
VCCIO3
I/O/TDI4
I/O5
I/O6
I/O7
I/O8
I/O9
I/O10
GND11
I/O12
I/O13
I/O14
I/O/TMS15
I/O16
I/O17
VCCIO18
I/O19
I/O20
I/O21
I/O22
I/O23
I/O24
I/O25

G
N

D
26

I/
O

27
I/

O
28

I/
O

29
I/

O
30

I/
O

31
I/

O
32

I/
O

33
V
C
C
IO

34
I/

O
35

I/
O

36
I/

O
37

G
N

D
38

V
C
C
IN

T
39

I/
O

40
I/

0/
PD

2
41

I/
O

42
G

N
D

43
I/

O
44

I/
O

45
I/

O
46

I/
O

47
I/

O
48

I/
O

49
I/

O
50

I/O 75
GND 74

I/O/TDO 73
I/O 72
I/O 71
I/O 70
I/O 69
I/O 68
I/O 67

VCCIO 66
I/O 65
I/O 64
I/O 63

I/O/TCK 62
I/O 61
I/O 60

GND 59
I/O 58
I/O 57
I/O 56
I/O 55
I/O 54
I/O 53
I/O 52

VCCIO 51

I/
O

10
0

I/
O

99
I/

O
98

I/
O

97
I/

O
96

G
N

D
95

I/
O

94
I/

O
93

I/
O

92
V
C
C
IN

T
91

IN
PU

T/
O

E2
/G

C
LK

2
90

IN
PU

T/
G

C
LR

89
IN

PU
T/

O
E1

88
IN

PU
T/

G
C
LK

1
87

G
N

D
86

I/
0/

G
C
LK

3
85

I/
O

84
I/

O
83

V
C
C
IO

82
I/

O
81

I/
O

80
I/

O
79

I/
O

78
I/

O
77

I/
O

76

R1LP5256ESP-5SI#B1
HIGH-MEM

A141
A122
A73
A64
A55
A46
A37
A28
A19
A010
DQ011
DQ112
DQ213
GND14 DQ3 15DQ4 16DQ5 17DQ6 18DQ7 19CS# 20A10 21OE# 22A11 23A9 24A8 25A13 26WE# 27VCC 28

R1LP5256ESP-5SI#B1
LOW-MEM

A141
A122
A73
A64
A55
A46
A37
A28
A19
A010
DQ011
DQ112
DQ213
GND14 DQ3 15DQ4 16DQ5 17DQ6 18DQ7 19CS# 20A10 21OE# 22A11 23A9 24A8 25A13 26WE# 27VCC 28

SP-TCK
SP-TDO
SP-TMS

SP-TDI

VCC

BC847C
Q2

VCC

BM
CL
K

M
CL
K

D2
D1
D0

A14
A12
A7
A6
A5
A4
A3
A2
A1
A0

CELM

WELM

OE

D7
D6
D5
D4
D3

VCC
A13

A11

A10

A9
A8

A0
A1
A2
A3
A4
A5
A6
A7
A12
A14

D0
D1
D2

CEHM

A8
A9

A10

A11

A13
VCC

D3
D4
D5
D6
D7

OE

WEHM

RDY6502

A
11

A
10A
9
A
8
A
7

A6
A5
A4
A3
A2

A1
A0

A
12
A
13
A
14
A
15

D0
D1
D2
D3
D4
D5
D6
D7

VCCVCC

NMIB6502
RWB6502

BE
65
02

CL
K
65
02

RS
T6
50
2

VCC

VCC

CLKZ80

NMIZ80

MREQZ80

A11

A15
A14
A13
A12

D0
D1

D2

D3
D4

D5
D6

D7
A10
A9
A8
A7

A5

A6

A4
A3
A2
A1
A0

RSTZ80BUSREQZ80
WAITZ80

WRZ80
RDZ80

VCC

VCC
V
CC

V
CC

V
CC

V
CC

VCC

VCC

VCC

VCC

SP-TCK

SP-TDO

SP-TMS

SP
-T
D
I

SP
-T
M
S

VCC VCC

BM
CL
K

SPBE

SPRST

CELM
WELM
CEHM

W
EH
M

A15
A14
A13
A12

A11
A10

A9
A8
A7

A6
A5
A4
A3
A2
A1

A0

D
0
D
1
D
2
D
3
D
4
D
5

D
6
D
7

CP
U
SL
C

CP
U
IR
Q

CP
U
G
O

CP
U
RS
T

SP
BE

CB
U
SY

CE
CM

RW
CM

V
BU
SY

CE
V
M

RW
V
M

O
E

CP
U
SP
DSI SO SC

A
O
E

RW
CA
T

LD

CA
TC
LK

SP
RS
T

CL
K
Z8
0

CL
K
65
02

WRZ80

W
A
IT
Z8
0

N
M
IB
65
02

RS
T6
50
2

RW
B6
50
2

BE
65
02

RD
Y
65
02

RS
TZ
80

BU
SR
EQ
Z8
0

SP-TDI
RDZ80

MREQZ80
NMIZ80

XCLK

BXRD

BXWR

FREE
XSLC

10Kľ
R27

10Kľ
R28

10Kľ
R30

10Kľ
R29

2.2K
R33

2.2K
R34

2.2K
R35

2.2K
R32

33ľ
R25

33ľ
R24

33ľ
R26

100nF
C13
VCC

SN74LVC1G125DBVR
U10

O
E

1
A

2
G

N
D

3
Y

4
V
C
C

5

33ľ
R31

B-3000N10P-0110
JTAG-SPACER

11

10 10

33

8 855 6 6
77

4 4

99

2 2

BXIN

XBUSACK

X
E

SN74LVC1G125DBVR
U9

O
E

1
A

2
G

N
D

3
Y

4
V
C
C

5
V
CC

33ľ
R23

100nF
C12

V1.0, April 2021 The Byte Attic's CERBERUS 2100™ Manual 62

A A

B B

C C

D D

1

1

2

2

3

3

4

4

5

5

TITLE:
CERBERUS 2100 I/O controller REV: 1.0

Date: 2023-06-28

Sheet: 4/5
Drawn By: Bernardo Kastrup

Company: The Byte Attic

VCC
ATMEGA328PB-AU
FAT-CAT

(OC2B/INT1/PTCXY)PD3
1

(XCK0/T0/PTCXY)PD4
2

PE0(PTCXY/SDA1/ICP4/ACO)
3

V
C
C

4

G
N

D
5

PE1(PTCXY/SCL1/T4)
6

(XTAL1/TOSC1)PB6
7

(XTAL2/TOSC2)PB7
8

(OC0B/T1/PTCXY)PD5
9

(OC0A/AIN0/PTCXY)PD6
10

AREF
20

(RXD0/OC3A/PTCXY)PD0
30

(AIN1/PTCXY)PD7
11

G
N

D
21

(TXD0/OC4A/PTCXY)PD1
31

(CLKO/ICP1/PTCXY)PB0
12

PE3(PTCY/ADC7/T3/MOSI1)
22

(OC3B/OC4B/INT0/PTCXY)PD2
32

(OC1A/PTCXY)PB1
13

(MISO1/ADC0/PTCY)PC0
23

(OC1B/SS0/PTCXY)PB2
14

(SCK1/ADC1/PTCY)PC1
24

(MOSI0/TXD1/OC2A/PTCXY)PB3
15

(ADC2/PTCY)PC2
25

(MISO0/RXD1/PTCXY)PB4
16

(ADC3/PTCY)PC3
26

(XCK0/SCK0/PTCXY)PB5
17

(SDA0/ADC4/PTCY)PC4
27

A
V
C
C

18

(SCL0/ADC5/PTCY)PC5
28

PE2(PTCY/ADC6/ICP3/SS1)
19

(RESET#)PC6
29

VCC

CATRST

KDAT

SI
SO
SC
AOE
RWCAT
LD

SCK
MISO

CS
CPUSPD
CPURST

CPUGO
CPUIRQ
CPUSLC

CATCLK

SOUND

KCLK
TX
RX

VCC VCCVCCVCC VCC

VCC VCC

VCC VCC

VCC

VCC VCC

VCC VCC VCC VCC VCC VCC

VCC TLV1117LV33DCYR
LDO

A
D

J/
G

N
D

1

OUT 2IN3
OUT 4 3V3

3V3

TF-01A_C2889258
SD

GND 13
GND 12

GND 11
GND 10CD9 DAT18 DAT07 VSS6 CLK5 VDD4 CMD3 CD/DAT32 DAT21

MOSI
MISO

SCK
CS

CS_LLS
DI_LLS

3V3
SCK_LLS

DO_LLS

CS_LLS

DI_LLS

SCK_LLS

DO_LLS

SSW-106-02-F-S-RA
FTDI

1
1

2
2

3
3

4
4

5
5

6
6

VCC

TX
RX

CATRST

VCC

VCCVCC

VCC VCC

VCC

SN74LVC125ADR
LVLSHF

1OE#1
1A2
1Y3
2OE#4
2A5
2Y6
GND7 3Y 83A 93OE# 104Y 114A 124OE# 13VCC 14

100uF
C37

VCC VCC

100uF
C44

VCC

100uF
C49

VCC

100uF
C56

VCC

100uF
C63

100nF
C57

VCC VCC

100nF
C64

100nF
C36

VCCVCC

100nF
C30

100nF
C58

VCC VCC

100nF
C65

100nF
C51

VCCVCC

100nF
C42

100nF
C41

VCC VCC

100nF
C50

100nF
C35

VCCVCC

100nF
C29

BXBUSREQ
XBUSACK

FREE
BXIRQ

VCC

BO
O
TR
ST

10Kľ
R41 100nF

C16

100nF
C14

100nF
C17

100nF
C26

100nF
C33

100nF
C40

100nF
C47

100nF
C54

100nF
C61

100nF
C27

100nF
C34

100nF
C43

100nF
C48

100nF
C55

100nF
C62

100nF
C28

33ľ
R40

3.3kľR36

3.3kľR37

3.3kľR38

3.3kľR39

1uF
C15

1uF
C18

10uF
C20

10uF
C22

10uF
C24

10uF
C31

10uF
C38

10uF
C45

10uF
C52

10uF
C60

10uF
C66

10uF
C19

10uF
C21

10uF
C23

10uF
C25

VCC VCC

10uF
C32

VCC

10uF
C39

VCC

10uF
C46

VCC

10uF
C53

10uF
C67

VCC

10uF
C59

VCC

MOSI

V1.0, April 2021 The Byte Attic's CERBERUS 2100™ Manual 63

A A

B B

C C

D D

1

1

2

2

3

3

4

4

5

5

TITLE:
CERBERUS2080 , bus expansion REV: 1.0

Date: 2023-06-28

Sheet: 5/5
Drawn By: Bernardo Kastrup

Company: The Byte Attic

D4
D5
D6
D7

D2
D3

D1
D0

A8
A9

A11
A10

A14
A15

A13
A12

A4
A5

A7
A6

A2
A3

A1
A0

100uF
C68

BSMD0805L-150
F2

12

SN74HC245NSR
BT2

DIR 1A1 2A2 3A3 4A4 5A5 6A6 7A7 8A8 9GND 10B811
B712
B613
B514
B415
B316
B217
B118
OE#19
VCC20

SN74HC245NSR
BT3

DIR 1A1 2A2 3A3 4A4 5A5 6A6 7A7 8A8 9GND 10B811
B712
B613
B514
B415
B316
B217
B118
OE#19
VCC20

SN74HC245NSR
BT1

DIR 1A1 2A2 3A3 4A4 5A5 6A6 7A7 8A8 9GND 10B811
B712
B613
B514
B415
B316
B217
B118
OE#19
VCC20

VCC

VCC

A
0
A
1

A
3
A
2

A
6
A
7

A
5
A
4

A
8
A
9

A
10
A
11

A
12
A
13
A
14
A
15D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7

V
BU
SY

RW
CA
T

RW
B6
50
2

BE
65
02

N
M
IB
65
02

RS
T6
50
2

VCC VCC

RD
Y
65
02

RS
TZ
80

N
M
IZ
80

M
RE
Q
Z8
0

RD
Z8
0

W
RZ
80

W
A
IT
Z8
0

BU
SR
EQ
Z8
0

CE
H
M

W
EL
M

W
EH
M

CE
V
M

RW
V
M

CE
CM

RW
CM

CE
LM

CB
U
SYO
E

10K
R50

10K
R60

VCC

XBUSACK

XBUSACK

X
BU
SA
CK

X
W
R

X
RD

VCC

SN74HC244NSR
BUFFER1

1O
E#

1
1A

1
2

2Y
4

3
1A

2
4

2Y
3

5
1A

3
6

2Y
2

7
1A

4
8

2Y
1

9
G

N
D

10
2A

1
11

1Y
4

12
2A

2
13

1Y
3

14
2A

3
15

1Y
2

16
2A

4
17

1Y
1

18
2O

E#
19

V
C
C

20

VCC

BX
BU
SA
CK

BX
RD

BX
W
R

X
BU
SR
EQ

X
IR
Q

BX
BU
SR
EQ

BX
IR
Q

X
SL
C

BX
SL
C

X
CL
K

10K
R42

VCC

PZ254-1-06-Z-8.5
BOOTLD

11
22
33
44
55
66

SCK
VCC

MOSI
MISO

BOOTRST

XBUSACK
BXWR

SN74AHCT1G32DCKR
OR

A 1B 2GND 3
Y4
VCC5VCC

GND

XE

XE

XE

BX
CL
K

G
G
04
02
05
2R
54
2P

D
1

33ľ
R68

10kľ
RN1

10kľ
RN2

10kľ
RN3

V
CC

V
CC

V
CC

100nF
C69

XA0
XA1
XA2
XA3
XA4
XA5
XA6
XA7

XA8
XA9
XA10
XA11
XA12
XA13
XA14
XA15

XD0
XD1
XD2
XD3
XD4
XD5
XD6
XD7

XE

X
BU
SA
CK

X
SL
C

10
K

R
51

10
K

R
53

VCC

10K
RN4

10K
RN5

VCC VCC

BX
SL
C

BX
BU
SA
CK X
E

X
W
R

X
RD

X
IR
Q

X
BU
SR
EQ

BXCLK

XRD
XIRQ

BXSLC
BXBUSACK
XBUSREQ

XWR
XA0
XA2
XA4
XA6
XA8
XA10
XA12
XA14

XA1
XA3
XA5
XA7
XA9
XA11
XA13
XA15
XD1
XD3
XD5
XD7

XD0
XD2
XD4
XD6

X
IN

BX
IN

XIN
BH-00105
EXP1

1 1

4040

3 3

3838

5 5

3636

7 7

3434

9 9

3232

11 11

3030

13 13

2828

15 15

2626

17 17

2424

19 192222 21 21
2020

23 23

1818

25 25

1616

27 27

1414

29 29

1212

31 31

1010

33 33

88

35 35

66

37 37

44

39 39

22

X
IN

