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Introduction

• CERBERUS 2100™ is an innovative, fully-
functional computer, not a toy

• It is an open-source educational 
platform for students of electronics and 
computer engineering

• It gives the user direct, convenient and 
unrestricted access to the hardware

• It allows for easy hardware changes and 
experimentation through in-system 
reprogramming of three CPLDs

• Its BIOS is an Arduino AVR sketch 
written in C, thus very easy to edit

• Its architecture is highly modular, 
allowing for compartmentalized, safe 
experimentation

• CERBERUS 2100™ aims to demystify 
computers by showing in detail how 
one is built, down to single gates and 
flip-flops

• Its architecture illustrates how a multi-
processor system—with expansion 
possibility for even more processors—
can be built

• Its design was done explicitly at the 
gate-level, with no high-level hardware 
synthesis tools

• CERBERUS 2100’s architecture is clean 
and very easy to understand

• Two BASIC interpreters: one for the Z80 
and the other for the W65C02S CPU



Technical specifications

• Complete 8-bit multi-processor 
microcomputer

• Built-in expansion slot with simple, 
generic I/O protocol

• 3 processors: Z80 and W65C02S CPUs, 
plus AVR I/O controller

• The CPUs run at 4 or 8 MHz (user-
selectable), the AVR controller at 16 
MHz

• Chipset with 3 custom ICs (CPLDs): FAT-
SCUNK™, FAT-CAVIA™ and FAT-SPACER™

• Buzzer sound

• Up to 8 simultaneous screen colors

• Standard PS/2-compatible USB 
keyboard

• Standard µSD card storage, with file 
system built into the BIOS

• 64 KB of user-addressable RAM

• No ROM: the BIOS is stored in the AVR 
controller’s internal Flash and uses up 
no address space

• Standard VGA video, character-based, 
320x240 pixels (40x30 individually 
addressable characters)

• On-the-fly user-redefinable character 
bitmaps for tile graphics



Technical 
overview



System overview

• CERBERUS 2100™ can be divided into 
three sub-systems:
• The video circuit,

driven by a 25.175 MHz oscillator
• The computer proper,

driven by a 16 MHz oscillator
• The expansion circuit

• The three sub-systems are entirely 
asynchronous, modular, and 
communicate with each other via 
memory-mapped I/O

• The expansion circuit communicates 
with the computer proper via the two 
single-ported system memories, 
totaling 60 KB of addressable space

• The computer proper communicates 
with the video circuit via two dual-
ported memories:
• A 2KB video memory, storing a 

character identifier for each screen 
position

• A 2KB character memory, which 
holds the character definitions or 
bitmaps

• Two custom ICs in the video circuit:
• FAT-SCUNK (‘Scan CoUNter and 

clocK’), which controls all VGA timing 
and colors

• FAT-CAVIA (‘ChAracter Video 
Adapter’), which continuously scans 
the video and character memories to 
generate the screen



System overview (cont.)

• The computer proper has four main ICs:
• FAT-CAT (‘Custom ATmega328pb’), the 

I/O processor and system master
• FAT-SPACER (‘Serial to PArallel

ControllER’), which manages all control 
signals, clocks, and translates FAT-CAT’s 
serial data into parallel words & vice-
versa

• Z80, one of the two CPUs, responsible 
for running user code and a BASIC 
interpreter

• W65C02S, the other CPU, also with its 
own BASIC interpreter

• As the system master, FAT-CAT runs the BIOS 
code (Basic Input/Output System) and 
delegates applications to the CPUs

• Two 32KB SRAMs (60KB user-addressable) 
serve as system memory

• No ROM: BIOS code is stored in FAT-CAT’s 
internal Flash memory (32 KB) and doesn’t 
use system address space

• The expansion circuit consists of:
• Three tri-state bus transceivers to 

boost and isolate data & address buses
• One buffer to boost and isolate control 

lines
• A discrete logic gate for control signal 

processing

• Signals to/from the expansion slot are 
processed by FAT-CAT and FAT-SPACER



System architecture
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Board overview
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FAT-CAT™ overview

• An ATmega328PB microcontroller 
configured to use a strong external 
oscillator (16 MHz)

• FAT-CAT is CERBERUS 2100’s system
master: it runs the BIOS code from its 
onboard Flash memory and controls the 
CPUs and expansion

• The BIOS code is written in C and 
compiled under the Arduino IDE

• Except for video, FAT-CAT performs all 
I/O functions: file system operations, 
keyboard & expansion control, and 
sound output

• FAT-CAT determines the CPU clock 
frequency (4 or 8 MHz)

• Because of its serial nature, FAT-CAT is 
slow compared to the CPUs, but 
excels in flexibility and is therefore 
suitable for I/O operations & global 
system control

• FAT-CAT is capable of DMA (Direct 
Memory Access) through FAT-SPACER
• Although FAT-CAT is a serial 

controller, through FAT-SPACER’s 
internal shift registers it can access 
both data and address buses

• The user can only access the CPUs 
through FAT-CAT
• It resets, selects, starts, halts, 

interrupts, passes on keyboard 
inputs & delegates applications to 
the CPUs via FAT-SPACER



FAT-SPACER™ overview

• FAT-SPACER is the glue that binds 
together the components of the 
computer proper

• Its design is the core of CERBERUS 
2100’s architecture, enabling the 
innovative multi-processor approach

• It replaces a standard control bus with a 
fully-connected control network that 
orchestrates the activity of the three 
processors and four memories

• All control inputs and outputs of all ICs 
in the computer proper are processed 
by FAT-SPACER’s internal logic

• FAT-SPACER’s functions:
• Memory Selection: enabling the appropriate 

memory IC depending on the contents of the 
address bus

• Expansion trigger: generating the XSLC signal to 
trigger the expansion, depending on the 
contents of the address bus

• Read/Write control: generating the appropriate 
write- and output-enable signals for the four 
memory ICs

• Clock Management: generating and managing 
the clocks for FAT-CAT, the two CPUs and the 
expansion slot

• CPU Control: generating the signals to reset, 
start, halt, tristate and interrupt the CPUs, based 
on input from FAT-CAT

• Serial/Parallel Translation: translating FAT-CAT’s 
serial data and addresses into parallel bus 
accesses, and vice-versa



CERBERUS 2100™’s VGA mode

• CERBERUS 2100™ uses a standard VGA 
mode with 640x480 screen pixels and a 
25.175 MHz pixel clock

• But each CERBERUS pixel is a 2x2 matrix 
of screen pixels

• CERBERUS 2100’s resolution is thus 
320x240 pixels, or 40x30 characters of 
8x8 pixels each

• This translation is achieved by sampling 
each CERBERUS pixel four times: twice 
horizontally and twice vertically

• Each of the 40x30 addresses in video 
memory holds a byte that identifies a 
character from the character set

• FAT-CAVIA reads out that byte, which 
then becomes the 8 most-significant 
bits of an 11-bit character memory 
address

• FAT-CAVIA reads out the 8 bytes of the 
corresponding character bitmap in 
character memory by progressively 
incrementing the 3 least-significant bits 
of the address from 0 to 7



Video and character memory organization
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Video circuit architecture
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FAT-CAVIA™ overview

• FAT-CAVIA continuously scans all 
addresses of video memory, as well as 
the corresponding addresses in 
character memory

• Each 40-character line in video memory 
is scanned 16 times per frame
• 8 bytes per character times 2 

passes per byte, so to double-
sample it vertically

• Each read from video memory produces 
a character code byte that constitutes 
the 8 most-significant bits of the 
corresponding 11-bit character memory 
address

• FAT-CAVIA uses a counter to produce 
the 3 least-significant bits of the 11-bit 
address, so to scan all 8 bytes of the 
corresponding character bitmap in 
character memory 

• Since each character memory read 
leads to 8 pixels (i.e. a byte from the 
character bitmap), which are then 
double-sampled horizontally, FAT-
CAVIA’s clock (CCLK) is 1/16 of the pixel 
clock (PCLK)

• FAT-CAVIA also passes on the character
code byte to FAT-SCUNK for color
processing (each character code is given 
a specific color by FAT-SCUNK)



FAT-SCUNK™ overview

• Each video frame consists of 480 pixel
lines and is followed by a vertical blanking 
interval equivalent in timing to an 
additional 45 lines

• Each pixel line consists of 640 screen 
pixels followed by a horizontal blanking 
interval equivalent in timing to an 
additional 160 screen pixels

• Both the vertical and horizontal blanking 
intervals encompass synchronization 
pulses

• FAT-SCUNK is responsible for counting all 
the relevant intervals and producing the 
synchronization pulses

• It also generates the FAT-CAVIA clock 
(CCLK) from the pixel clock (PCLK) using an 
internal clock divider

• It features an internal 8-bit shift register, 
wherein each byte read out from 
character memory is temporarily stored

• It then shifts each bit of that byte out to 
the RGB lines of the VGA connector, 
according to a shift register clock (SRCLK)

• SRCLK is generated internally by FAT-
SCUNK, through a clock divider, and is ½ of 
PCLK so to horizontally double-sample 
each bit

• Each bit shifted out to the RGB lines is 
given a specific color, which depends on 
the character code it corresponds to

• Up to 8 colors can be displayed
simultaneously on the screen



FAT-SCUNK: action timing
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Standard VGA signal
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Colors

• The character memory only contains 
binary character bitmaps

• The background color of all characters is
black (corresponding to 0 in the bitmap)

• But FAT-SCUNK receives from FAT-CAVIA 
the character code of the character 
currently being displayed, so it can assign 
a different foreground color (1 in the 
bitmap) per character, which allows for up 
to 8 colors (including black and white) 
simultaneously displayed on the screen

• Most characters (including all text ones) 
are only displayed with white as 
foreground color (see figure above)

• Most graphics characters, however, have 
different foreground colors, with 4 
different character codes corresponding 
to each of green, red, blue, yellow, cyan,
and magenta (see figure above)

• Since all characters in CERBERUS 2100 are 
redefinable on-the-fly, programmers have 
at least 4 different redefinable characters 
for each color

• Color assignments to specific character 
codes is hardware-defined and can only 
be changed by reprogramming FAT-
SCUNK, not from software



Color maps

• CERBERUS 2100 assigns foreground 
colors to character codes, not screen 
regions (the latter is what is called a 
color map, such as in the ZX Spectrum)

• However, color maps are possible: FAT-
CAVIA and FAT-SCUNK can be 
reprogrammed for this purpose

• Instead of passing the current character 
code to FAT-SCUNK, FAT-CAVIA must be 
reprogrammed so to pass the address in 
video memory currently being scanned

• This address can then be used in the 
logic equations for the signals RED, 
GREEN and BLUE in the FAT-SCUNK 
hardware description file 
(FATSCUNK.PLD)

• This way, a given screen position will 
have a unique foreground color, 
regardless of what character occupies it

• Doing this may be a fun and 
educational way to experiment with 
programming CPLDs, as the results are 
immediately visible on the screen



Programming 
instructions



(Re)programming the CPLDs: preparation

1. If you bought a ready-to-use CEBERUS 2100™ and 
are not modifying the CPLD circuits, you may skip 
this and the next page

2. Otherwise, you will need the following tools:
• Microchip ATDH1150USB JTAG USB ISP cable
• Microchip ATMISP v7.3 or later, freely-

downloadable in-system programing 
software:
https://www.microchip.com/en-
us/products/fpgas-and-plds/spld-cplds/pld-
design-resources

3. Connect one end of the USB cable that 
accompanies the ATDH1150USB to the ‘USB’ port 
of the JTAG box, and the other end to your 
Windows PC

4. Connect one end of the 10-wire flat cable that 
accompanies the ATDH1150USB to the ‘JTAG A’ 
port of the JTAG box (see picture)

https://www.microchip.com/en-us/products/fpgas-and-plds/spld-cplds/pld-design-resources


(Re)programming the CPLDs

5. Connect the free end of the 10-wire flat cable to the appropriate 
JTAG header on the CERBERUS 2100™ board (each of FAT-SCUNK, 
FAT-CAVIA and FAT-SPACER has a marked 10-pin JTAG header 
close to it)

6. Connect CERBERUS 2100™ to a USB power source via the USB-C 
connector and turn it on

7. In your Windows PC, open ATMISP and click:
File → New

8. In the pop-up window, enter 1 device and click OK

9. In the new pop-up window, under Device Name choose:
ATF1508AS

10. Under JTAG Instruction choose: Program/Verify

11. Next to JEDEC File click Browse and choose the appropriate 
.jed file from CERBERUS 2100’s distribution (e.g. choose FAT-
SPACER.jed to program FAT-SPACER), click OK

12. Click Run and wait for completion

13. Turn CERBERUS 2100™ off

14. Repeat the above for FAT-SCUNK, FAT-CAVIA and FAT-SPACER, 
repositioning the 10-wire flat cable accordingly each time



Programming FAT-CAT: preparation

1. If you bought a pre-programmed CERBERUS 
2100™, it already has a bootloader burned in 
it, so you may skip ahead to step 18

2. Otherwise, you will need:
• An Arduino UNO board (with USB cable)
• An Arduino IDE installation on your PC:

https://www.arduino.cc/en/software
• 5 male-to-female jumper wires
• A 10µF capacitor rated for 6.3V or higher

3. Make sure FAT-SPACER is already 
programmed, for without it you won’t be able 
to burn the bootloader, as FAT-CAT won’t be 
getting a clock

https://www.arduino.cc/en/software


Burning the bootloader

4. Connect the Arduino UNO to your 
computer (via USB) and launch the 
Arduino IDE

5. In the Arduino IDE, load:
File → Examples →
11.ArduinoISP → ArduinoISP

6. Compile and upload the 
ArduinoISP sketch to the Arduino 
UNO

7. When done, disconnect the Arduino 
UNO from your PC



Burning the bootloader (cont.)

8. Set up the cables as shown in the pictures
• Connect the 10µF capacitor between GND 

and RESET of the Arduino UNO (watch out 
for the polarity!)

• Connect pins 13 to 10 of the Arduino Uno 
respectively to pins SCK, MISO, MOSI, and 
RST of the ‘BOOTLD’ header on the 
CERBERUS 2100™ board

• Connect GND on the Arduino Uno to the 
GND pin of the BOOTLD header

• You do not need to connect the 5V line

9. Install MCUdude’s MiniCore library in the 
Arduino IDE, following the instructions 
provided on the library’s repository at:
https://github.com/MCUdude/MiniCore

10. Reconnect the UNO to your PC

https://github.com/MCUdude/MiniCore


Burning the
bootloader (cont.)

11. From the Arduino IDE, select:
Tools → Board →
MiniCore → ATmega328

12. Set the options as per the picture to the right

13. Still from the Arduino IDE, change the COM port 
to the one active in your case:
Tools → Port → (active port)

14. Now select:
Tools → Programmer →
Arduino as ISP

15. Connect CERBERUS 2100™ to a USB power source 
via the USB-C connector and turn it on

16. And finally:
Tools → Burn Bootloader

17. After completion, turn CERBERUS 2100™ off and 
disconnect the Arduino UNO from your PC



(Re)programming the BIOS

18. You will now need:
• An AZDelivery FTDI Adapter FT232RL USB to TTL 

Serial (or equivalent)
• A standard USB-A to mini-USB cable

19. Remove the voltage jumper from the FTDI adapter (no 
voltage selected)

20. Connect the FTDI adapter to your PC via the USB cable

21. Connect the FTDI adapter to the FTDI port of the 
CERBERUS 2100™ board, facing up
(see picture to the right)

22. In the Arduino IDE, open the 
CERBERUS_2100_BIOS.ino sketch in the 
directory CAT/CERBERUS_2100_BIOS/
of the CERBERUS 2100™ distribution

23. Make sure the directory src/ of the distribution is 
next to the sketch

24. Connect CERBERUS 2100™ to a USB power source via 
the USB-C connector and turn it on



(Re)programming the BIOS (cont.)

25. Select the now-active COM port:
Tools → Port → (active port)

26. Compile and upload the sketch
(you may now hear CERBERUS 2100™ beep, which is 
normal; if it annoys you, disable the buzzer by placing a 
jumper on the BUZZ-DIS header)

27. Turn CERBERUS 2100™ off

28. Disconnect the FTDI adapter from the CERBERUS 2100™
board

29. Copy the files in the Ceberus uSD card files/ 
directory of the distribution to a FAT32-formatted, class-10 
(or higher) µSD card 

30. Insert the µSD card into CERBERUS’s µSD card adapter

31. Connect CERBERUS 2100™ to a VGA monitor, PS/2-
compatible keyboard and a USB power source

32. Turn CERBERUS 2100™ on

33. You’re done! CERBERUS 2100™ should now boot normally 
and display the start-up screen shown in the picture to the 
right



User’s 
manual



Powering CERBERUS 2100™ on

1. To boot properly, CERBERUS 2100™ needs to 
have a µSD card inserted in it, loaded with the 
files in the Ceberus uSD card files/ 
directory of the distribution

2. If CERBERUS 2100™ finds no µSD card, it will 
produce a repeating beep to indicate an error, 
and show garble on the screen

3. If a µSD card is found, but lacks the 
chardefs.bin file, CERBERUS 2100™ will 
beep once and display garble

4. The correct startup screen is shown in the 
picture



The BIOS screen

• The user interacts with CERBERUS 2100™
through the BIOS Screen, which is displayed 
upon startup

• The BIOS Screen has two segments:
the Main Window above and
the Command Window below

• The Command Window is further divided into 
two segments: the Message Line above and the 
Edit Line below

• CERBERUS 2100™ displays system messages to 
the user in the Message Line

• The user gives CERBERUS 2100™ commands by 
typing them out in the Edit Line

• Type ‘help’ or ‘?’ to display a list of the 
commands available, which will be discussed in 
more detail in the next pages

BIOS screen Command 
WindowMain Window

Message Line Edit Line



Commands: basics

• Typing the up-arrow fills the Edit Line 
with the last command typed

• Typing the down-arrow clears the 
Edit Line

• run executes the code currently in the 
code area (starting at address $0205) 
on the selected CPU
• If the code in memory is meant for 

one of the CPUs, but you try to 
execute it on the other, the result 
will be unpredictable

• If the CPU is running code, press F12 to 
return to the BIOS Screen

• cls clears the Main Window

• reset resets CAT and the two CPUs, 
redraws the startup screen, but does 
not otherwise erase the contents of 
memory

• 6502 selects the W65C02S CPU

• z80 selects the Z80 CPU

• fast sets the CPU clock at 8 MHz

• slow sets the CPU clock at 4 MHz

• help or ? displays a summary of the 
commands available



Commands: file manipulation

• All numbers typed into the Edit Line are 
assumed to be hexadecimal
• Instead of typing ‘0xFF’ or ‘$FF’, type 

simply ‘FF’

• File names are not case-sensitive, so 
‘CODE.bin’ and ‘code.bin’ will be the 
same file

• load FILE ADDR loads the contents of a 
binary file named FILE from the µSD card 
into memory, starting from the address 
ADDR (in hex)
• If ADDR is not provided, CERBERUS 

2100™ will default to $0205, the start 
of the code area

• The file name FILE needs to be typed 
out in full

• Example: ‘load cell6502.bin’

• save ADDR1 ADDR2 FILE saves the 
contents of memory from ADDR1 to ADDR2, 
inclusive, to a binary file named FILE in the 
µSD card
• Example:

‘save 205 2ff program.bin’

• del FILE deletes the file named FILE
from the µSD card
• The name FILE needs to be typed out 

in full
• Example: ‘del typez80.bin’

• dir lists the files on the µSD card
• CERBERUS’s file system, built into the 

BIOS, does not support sub-directories, 
so all files must be in the root of the 
µSD card



Commands: editing memory 

• list ADDR displays the contents of 
memory from address ADDR onwards, 
until the Main Window is filled up
• If ADDR is not provided, CERBERUS 

2100™ will default to $0000
• Example: ‘list F800’

• Again, all numbers typed into the Edit 
Line are assumed by CERBERUS 2100™
to be hexadecimal
• Instead of typing ‘0xFF’ or ‘$FF’, type 

simply ‘FF’

• 0xADDR BYTE(s) inserts the list of 
bytes BYTE(s) (wherein individual 
bytes are separated by spaces or 
commas) into memory, starting from 
address ADDR
• The list of bytes can be as long as it fits 

in the Edit Line, or have a single byte
• You can use this command to write 

directly into video and character 
memories, which is handy to alter and 
see the character definitions

• Try out these cool examples
(after ‘cls’):
‘0xF82A 00 01 02 03 04 05 06 07’
‘0xF000 FF 00 FF 00 FF 00 FF 00’



Commands: editing memory (cont.)

• move ADDR1 ADDR2 ADDR3 copies 
the contents of memory in the segment 
between ADDR1 and ADDR2, inclusive, 
to the segment starting at ADDR3
• Example:

‘move 0000 00FF FF00’

• testmem writes a sequence of 
numbers into low memory, then reads 
it from low memory and writes it to 
high memory, then reads it from high 
memory and writes it to video memory, 
where the sequence is interpreted as 
characters and displayed
• This is a non-exhaustive test of the 

memory subsystem
• It also displays the character set, as 

currently defined in character 
memory, on the screen



The character set

• CERBERUS 2100™ allows for 256 different character 
definitions, each identified by an extended ASCII value 
or character code, ranging from 0 to 255

• The picture illustrates the default character set, listed 
from 0 to 255 from the top left
(it repeats itself after it ends)

• The character definitions are stored in addresses $F000 
to $F7FF (inclusive)

• Each character is an 8x8 bitmap, and thus requires 8 
bytes in its definition

• The bitmap of character 0 (the cursor character) is 
stored in addresses $F000 to $F007

• The bitmap of character 1 is stored in addresses $F008 
to $F00F, and so on

• All character definitions can be modified by the user 
from the BIOS Screen or dynamically, from a program 
running on one of the CPUs

• Try this command, which changes the cursor:
‘0xF000 FF 00 00 00 00 00 00 FF’

• To reload the standard definitions again, type:
‘reset’ or ‘load chardefs.bin F000’



The memory map
0000
0001
0002

0066
0067

00FF

0100

01FF

0205

EFFD

0200
0201
0202
0203
0204

F000

F7FF

F800

FCAF

FCB1

FFF9

FFFA
FFFB
FFFC
FFFD
FFFE
FFFF

FCB0

Z80’s ‘reset vector’
(JP $0205)

Z80’s NMI service
routine (RETN)

Inbox Data
Reserved for BIOS extensions

Start of code area

W65C02S’s NMI service
routine (RTI)

W65C02S’s NMI
vector (FCB0)

W65C02S’s reset
vector (0205)

W65C02S’s zero page

W65C02S’s stack area

User memory block 1

User memory block 2

Character memory

Video memory

W65C02S’s reset and
Interrupt vectors

address

Outbox Data
Inbox Flag

Outbox Flag

EFFE
EFFFReserved for expansion

Xmail

• The diagram shows CERBERUS 2100™’s memory map

• Address $0205 is the start of the code area

• Addresses $0200 and $0202 are flags: FAT-CAT and CPU set 
these flags to inform each other that a byte is being passed

• Addresses $0201 and $0204 are data boxes: they contain 
the actual byte that is being passed between FAT-CAT and CPU

• When the address Xmail ($EFFE) is written to, FAT-SPACER 
pulls XSLC (see Expansion Slot section ahead) low for a cycle, 
to alert the expansion card that there is data for it in memory

• Any byte poked into the video area will be interpreted as a 
character code and the corresponding character bitmap will 
be displayed on the screen

• Any byte poked into the character memory will be interpreted 
as an update to a character definition

• The largest contiguous area available for programs and data is 
the user memory block 1, which resides physically in the two 
32KB SRAM ICs

• The user memory block 2 is also available, and resides 
physically in the DP Video SRAM (the screen does not use all 
the addresses in this chip)



Test programs

• CERBERUS 2100™’s distribution contains four 
test assembly programs:
• TYPE6502.bin
• TYPEZ80.bin
• CELL6502.bin
• CELLZ80.bin

• The corresponding source (.asm) files are 
also provided in the in the directory
CERBERUS Applications Source Code/
of the distribution

• The ‘TYPE’ application simulates a typewriter 
on the screen: it prints out, in sequence, the 
keys you press on the keyboard
• It tests the interface between FAT-CAT (which 

reads the keyboard) and the active CPU 
(which receives the character code read via 
memory-mapped I/O) during application 
execution

• The CELL application is a Wolfram Rule-30 
linear cellular automaton that fills the screen 
with fractal, vertical-scrolling patterns
• It tests the speed of CERBERUS 2100’s 

software-based scrolling

• The CELL6502.bin code is slightly more 
sophisticated then the CELLZ80.bin code
• The W65C02S version also updates the 

character definitions in the character 
memory on-the-fly, during execution

• The BIOS will not prevent you from trying to 
run W65C02S code on the Z80, or Z80 code 
on the W65C02S
• If you accidently do so, the result is 

unpredictable, but won’t damage anything



Tips and tricks

• You can load new programs by turning 
CERBERUS 2100™ off, removing the µSD 
card and copying new files to it from 
your PC

• Remember that you can control the 
CPU clock speed from the BIOS Screen: 
if a program is running too slow or—
which is more likely—too fast, you can 
partly compensate for it with the slow
and fast commands

• Clean the CERBERUS 2100™ board only 
with ESD-safe brushes and/or ESD-safe 
compressed gas

• There are tiny, modern PS/2-compatible 
USB keyboards—such as the MC Saite—
which can be used with CERBERUS 
2100™

• Monitor updates to the CERBERUS 
2100™ distribution files for firmware 
improvements and eventual bug fixes

• Since FAT-SPACER, FAT-SCUNK and FAT-
CAVIA are CPLDs, even hardware 
updates to the heart of CERBERUS 
2100™ can be performed without 
physical modifications to the board



Notes for 
programmers



More memory map considerations
0000
0001
0002

0066
0067

00FF

0100

01FF

0205

EFFD

0200
0201
0202
0203
0204

F000

F7FF

F800

FCAF

FCB1

FFF9

FFFA
FFFB
FFFC
FFFD
FFFE
FFFF

FCB0

Z80’s ‘reset vector’
(JP $0205)

Z80’s NMI service
routine (RETN)

Inbox Data
Reserved for BIOS extensions

Start of code area

W65C02S’s NMI service
routine (RTI)

W65C02S’s NMI
vector (FCB0)

W65C02S’s reset
vector (0205)

W65C02S’s zero page

W65C02S’s stack area

User memory block 1

User memory block 2

Character memory

Video memory

W65C02S’s reset and
Interrupt vectors

address

Outbox Data
Inbox Flag

Outbox Flag

EFFE
EFFFReserved for expansion

Xmail

• The BIOS will automatically put a JP $0205 on addresses $0000, 
$0001, and $0002 to simulate a reset vector for the Z80

• The BIOS will automatically put a simple RETN (return) instruction 
on addresses $0066 and $0067, where the Z80 looks for its non-
maskable interrupt service routine

• All I/O between FAT-CAT and CPU is memory-mapped to addresses 
$0201 (Outbox from FAT-CAT to CPU) and $0203 (Inbox to FAT-CAT 
from CPU)

• Address $0205 is the start of the code area for both CPUs

• The BIOS will store an RTI (return from interrupt) on address 
$FBC0, which is the non-maskable interrupt service routine for the 
W65C02S

• The BIOS will ensure that the W65C02S’s NMI and Reset vectors are 
set according to the above

• The largest contiguous area of memory available for code and 
variables is the user memory block 1

• User memory block 2, physically residing in the DP Video SRAM, is 
also available to programmers

• Z80 coders can use the address space of the W65C02S’s zero page 
and stack area as regular memory (except for addresses $0000 to 
$0002, $0066 and $0067, which are reserved)

• Z80 coders can also use the top 6 addresses as regular memory 
(which are otherwise reserved for the W65C02S’s reset and 
interrupt vectors)



Physical memory map
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$0000

$7FFF

$8000

$EFFF

$F000

$F7FF

$F800

$FFFF

Low memory (32KB SRAM IC)

High memory (32KB SRAM IC)

Video memory (2KB DP SRAM IC)

Character memory (2KB DP SRAM IC)



Video memory organization
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SCREEN
(each video memory address contains

a character code byte identifying an address
range in character memory, where the

corresponding character bitmap resides)
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$F803
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$F826
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$F828
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$F82A
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$F84E
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$F84F
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$FCAE
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$FCAF



More programming notes

• CERBERUS 2100™ supports two instruction 
sets: the Z80’s and the W65C02S’s
• But applications must target one or the 

other CPU, not both concurrently

• FAT-CAT handles keyboard inputs when a 
CPU is running an application
• Whenever a key is pressed, FAT-CAT 

halts the CPU, pokes a 1 into the 
Outbox Flag address, pokes the 
corresponding character code into the 
Outbox Data address, releases the CPU, 
and then issues a non-maskable 
interrupt (NMI)

• Applications should always clear the Outbox 
Flag by poking a 0 into it immediately upon 
reading out the Outbox Data

• The BIOS defines the non-maskable 
interrupt service routines as mere returns 
from interrupt (RTI for the W65C02S and 
RETN for the Z80)
• An application running on a CPU 

must read keyboard inputs by polling 
the Outbox Flag to see if there is a 
new input from the keyboard, and 
then reading out the inputted 
character code from the Outbox Data 
address

• If you want to use more elaborate NMI 
service routines for keyboard input—
instead of Outbox Flag polling—you will 
need to adapt the BIOS code (which is 
simple to do, since the BIOS is an Arduino 
sketch written in C)



More programming notes (cont.)

• Since FAT-CAT also issues a non-
maskable interrupt upon updating the 
Outbox Data and Outbox Flag 
addresses, wait-for-interrupt 
instructions (WAI for the W65C02S, 
HALT for the Z80) are supported

• Maskable interrupts are not supported
• Non-maskable interrupts are edge-

triggered and, therefore, much 
simpler to handle in the hardware

• CERBERUS 2100™ is an educational 
platform unlikely to be used for 
real-time applications, so the lack 
of maskable interrupts shouldn’t 
be a problem

• The Z80’s port instructions (such as IN
and OUT) are not supported
• All I/O is memory-mapped, 

through the Outbox and Inbox 
Data addresses

• The .asm and .hex files of the 
example applications are provided in 
CERBERUS 2100’s distribution, which 
illustrate how to deal with Outbox Flag 
polling and wait-for-interrupt 
instructions in both CPUs

• I also recommend that programmers 
writing applications for CERBERUS 
2100™ acquaint themselves with the 
BIOS code, available in the distribution



Generic cross-assembler considerations

• Your code should always start at address 
$0205, even for the Z80
• The BIOS will put a JP $0205 on 

address $0 to simulate a reset vector
• You should tell the assembler that 

your code starts at $0205

• CERBERUS 2100’s loader is very simple: it 
merely reads the binary file’s bytes and 
stores them sequentially in memory, from 
address $0205 onwards
• Only addresses and opcodes should 

be part of the assembled machine 
code!

• No loader directives are supported

• See the files in the folder

/CERBERUS Applications Source Code

for examples of assembly programs for 
both CPUs

• If you want to change character 
definitions as part of your code, you 
should do it with load (Z80) or store
(W65C02S) assembly instructions, as 
CERBERUS 2100’s loader will not 
recognize address directives



Expansion 
slot



Expansion slot overview

• CERBERUS 2100™ has a 40-pin expansion slot

• Cards connected to the expansion slot can 
have Direct Memory Access (DMA) to all of the 
system’s memories
• Therefore, the cards can have CPUs and 

microcontrollers; they don’t need to be 
passive-only circuits

• All communication between an expansion card 
and the rest of the system is memory-mapped

• The expansion I/O protocol is generic, so cards 
can work with either CPU

• The expansion slot’s pinout is marked directly 
on the board’s silkscreen, but is repeated here 
for convenience

XCLK
5V

XBUSREQ
XBUSACK

XRD
XA0
XA2
XA4
XA6
XA8
XA10
XA12
XA14
XD0
XD2
XD4
XD6
5V
5V

XIN

GND
XE
XSLC
XIRQ
XWR
XA1
XA3
XA5
XA7
XA9
XA11
XA13
XA15
XD1
XD3
XD5
XD7
GND
GND
GND



Expansion slot signals overview

• All control signals are active-low
• Inputs/Outputs

• XA0 to XA15: address bus lines, as 
exposed to the expansion slot through 
transceivers

• XD0 to XD7: data bus lines, as exposed to 
the expansion slot through a transceiver

• Inputs from the system, into the 
expansion:
• XCLK: the CPU clock (4 or 8MHz, as 

selected by FAT-CAT)
• XBUSACK: acknowledgment from FAT-CAT 

that the CPUs are tristated and the 
system’s buses are now available to the 
expansion card

• XSLC: a strobe from FAT-SPACER indicating 
that the Xmail address in high memory 
has been written to and, therefore, there 
is data in memory for the expansion card

• Outputs from the expansion, towards 
the system
• XBUSREQ: indicates that the expansion 

card is requesting (DMA) access to the 
system

• XE: enables the data and address bus 
transceivers so the expansion card can 
sniff the buses or perform DMA

• XIRQ: interrupt strobe that signals to the 
rest of the system that the expansion card 
has put something in memory for it

• XRD: memory read strobe from a card
• XWR: memory write strobe from a card
• XIN: unused output connected to FAT-

SPACER, so the expansion I/O protocol can 
be extended by users



DMA read procedure & timing diagram

The expansion card should perform the 
following steps to read from system memory:

1. Wait for XSLC to pulse low, signaling there 
is data in memory for the expansion card

2. Request access by pulling XBUSREQ low

3. Set address value locally, in the card

4. Wait until XBUSACK goes low

5. Pull XE low to drive the system’s address 
bus with the locally set address value

6. Wait for the system’s address bus to 
stabilize

7. Pull XRD low to trigger memory output

8. Wait for the system’s data bus (output 
from system memory) to stabilize

9. Read in the system’s data bus contents

10. Push XRD, XE and XBUSREQ back high (in 
this order) to complete the read cycle

Time

XBUSREQ

XBUSACK

XE

XRD

ADDR 
BUS

DATA 
BUS

XSLC



DMA write procedure & timing diagram

The expansion card should perform the 
following steps to write to system memory:

1. Request access by pulling XBUSREQ low

2. Set address and data values locally

3. Wait until XBUSACK goes low

4. Pull XE low to drive the system’s address 
and data buses with the locally set values

5. Wait for the buses to stabilize

6. Pull XWR low to trigger memory write

7. Wait for memory write cycle to complete

8. Push XWR, XE and XBUSREQ back high (in 
this order) to complete the write cycle

9. Wait for XBUSACK to go back high

10. Pulse XIRQ low to indicate to the rest of the 
system that the expansion card has written 
something in system memory

Time

XBUSREQ

XBUSACK

XE

XWR

ADDR 
BUS

DATA 
BUS

XIRQ



Bus sniffing

• A card on the expansion slot can ‘sniff’ 
the contents of both address and data 
buses without requesting access 
through XBUSREQ or being granted 
such access through XBUSACK

• To do so, the card can simply pull XE
low, so to enable the bus transceivers
• There is no need for a read strobe XRD

• The CPU clock signal XCLK can then be 
used for synchronization, allowing the 
values on the data and address buses to 
be sampled when they are stable

• Sniffing mode allows for passive 
expansion cards that simply monitor 
CERBERUS 2100™’s internal bus traffic

• By monitoring when writes are done to 
video and character memory, it is 
conceivable that, for instance, 
alternative video cards could be built
• Even though the read and write 

strobes within the system are not 
available in the expansion slots, 
access to video and character 
memory addresses from the 
computer proper are almost 
always write accesses; and even if 
they are read access, the data bus 
will still correctly reflect the 
contents of the respective address



Notes for card designers

• The expansion I/O protocol is 
asynchronous, so you are not required 
to use XCLK; your card can use its own 
crystal/oscillator, as long as you remain 
alert to the memories’ access timings
(if your card’s clock is slower than 
10MHz, you need not worry about it)

• All expansion control signals are already 
pulled up with 10KΩ, so there’s no need 
to pull them up again

• The data & address buses are also 
pulled up with 10KΩ, but only on the 
system’s side of the bus transceivers; 
therefore, your card should pull up its 
own internal data & address lines

• All signals are referenced to 5V at 
CMOS levels

• Remember that all expansion control 
signals are active-low

• XSLC is a pulse, so polling it won’t work
• You must connect it either to a pin 

of a microcontroller that has an 
edge-triggered interrupt attached 
to it…

• …or to a set/reset flip-flop, which 
can in turn be cleared by your logic 
once the transition of XSLC has 
been handled; this way you can 
poll the state of the flip-flop to 
know if XSLC has gone low



Notes for card programmers

• The top of high memory (address $EFFF) 
is reserved for the expansion, so feel free 
to use it as you wish

• All communication to and from the system 
should be mapped onto the system’s 
memories
• If your card has on-board memory, 

that local memory should not be 
accessed directly by a CPU, but only 
by the card itself

• If your card has on-board sensors, 
then the results of their 
measurements should be written to 
system memory before they can be 
accessed by a CPU

• XSLC goes low when the Xmail address is 
written to, but that does not mean that 
only the byte written to Xmail can be 
communicated to the expansion card
• As long as the card and the code 

running on a CPU are compatible, a 
protocol can be software-defined so 
the card reads an entire block of 
memory at each read cycle

• A final write to Xmail by a CPU can 
then work as a trigger for that read 
cycle

• The same rationale applies to the 
card’s write cycles: they don’t need 
to be restricted to a single byte



CPLD-based 
design



CPLD design notes

• These brief notes aim to merely 
complement the extensive commentary 
embedded in the .PLD files provided 
with CERBERUS 2100’s distribution, which 
contain the full hardware description of 
the three custom ICs 

• The CUPL hardware design language used 
is extensively described in the CUPL 
documentation available online

• The CUPL software is freely-available, so 
you can experiment with changing the 
design of the custom chips, if you so dare 

• Beware: the CUPL software doesn’t like 
empty spaces in any directory or file 
name, and will fail to find necessary files if 
these empty spaces are used

• The pinouts of FAT-SCUNK, FAT-CAVIA and 
FAT-SPACER can be seen in the respective 
.fit files in the distribution 

• Very briefly, here is the CUPL syntax: 
• ‘&’ means a logical AND 
• ‘#’ means a logical OR 
• ‘!’ means a logical INVERSION 
• ‘SIGNAL.t’ is the input to a toggle flip-

flop whose output is SIGNAL 
• ‘SIGNAL.d’ is the input to a D flip-flop 

whose output is SIGNAL 
• ‘SIGNAL.ck’ is the clock input to a flip-

flop whose output is SIGNAL 
• ‘SIGNAL.ce’ is the clock enable input to 

a flip-flop whose output is SIGNAL 
• ‘SIGNAL.ar’ is the asynchronous reset 

input to a flip-flop whose output is 
SIGNAL 

• ‘SIGNAL.ap’ is the asynchronous preset
input to a flip-flop whose output is 
SIGNAL



Schematics
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